Skip to main content

Rhythms and Morphogenesis

  • Chapter
Rhythms in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aon MA, Cortassa S (1997) Dynamic biological organization. Fundamentals as applied to cellular systems. Chapman and Hall, London.

    Google Scholar 

  • Balusˇka F, Volkmann D, Barlow PW (1997) Nuclear components with microtubule-organizing properties in multicellular eukaryotes: functional and evolutionary considerations. Int Rev Cytol 175:91–135.

    Article  Google Scholar 

  • Balusˇka F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: cell theory revised. Ann Bot 94:9–32.

    Article  Google Scholar 

  • Balusˇka F, Volkmann D, Barlow PW (2006) Cell-cell channels and their implications for cell theory. In: Balusˇka F, Volkmann D, Barlow PW (eds) Cell-cell channels. Eurekah, Georgetown, TX, pp 1–17.

    Google Scholar 

  • Barlow PW (1991) From cell wall networks to algorithms: the simulation and cytology of cell division patterns in plants. Protoplasma 162:69–85.

    Article  Google Scholar 

  • Barlow PW (1992) The meristem and quiescent centre in cultured root apices of the gib-1 mutant of tomato (Lycopersicon esculentum Mill.). Ann Bot 69:533–543.

    Google Scholar 

  • Barlow PW, Lück J (2005) Repetitive cellular patterns in the secondary phloem of conifer and dicot trees, and a hypothesis for their development. Plant Biosystems 139:164–179.

    Article  Google Scholar 

  • Barlow PW, Lück J (2006) Patterned cell development in the secondary phloem of dicotyledonous trees – A review and a hypothesis. J Plant Res 119:271–291.

    Article  PubMed  Google Scholar 

  • Barlow PW, Palma B (1997) The place of roots in plant development. In: Altman A, Waisel Y (eds) Biology of root formation and development. Plenum Press, New York, pp 1–11.

    Google Scholar 

  • Barlow PW, Powers SJ (2005) Predicting the environmental thresholds for cambial and secondary vascular tissue development in stems of hybrid aspen. Ann Forest Sci 62:565–573.

    Article  Google Scholar 

  • Barlow PW, Lück HB, Lück J (2001) The natural philosophy of plant form: cellular autoreproduction as a component of a structural explanation of plant form. Ann Bot 88: 1141–1152.

    Article  Google Scholar 

  • Borchert R (1991) Growth periodicity and dormancy. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 221–245.

    Google Scholar 

  • Brams GW (1983) Réseaux de Petri, vol 1. Théorie et pratique. Masson, Paris.

    Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619.

    Article  PubMed  CAS  Google Scholar 

  • Carles CC, Fletcher JC (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 8:394–401.

    Article  PubMed  CAS  Google Scholar 

  • Clark SE (2001) Meristems: start your signalling. Curr Opin Plant Biol 4:28–32.

    Article  PubMed  CAS  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418.

    PubMed  CAS  Google Scholar 

  • Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122:1567–1575.

    PubMed  CAS  Google Scholar 

  • Collings DA, Wasteneys GO (2005) Actin microfilament and microtubule distribution patterns in the expanding root of Arabidopsis thaliana. Can J Bot 83:579–590.

    Article  Google Scholar 

  • Darwin C, assisted by Darwin F (1880) The power of movement in plants. Murray, London.

    Google Scholar 

  • De Koster CG, Lindenmayer A (1987) Discrete and continuous models for heterocyst differentiation in growing filaments of blue-green bacteria. Acta Biotheor 36:249–273.

    Article  Google Scholar 

  • Doerner P (2006) Plant meristems: what you see is what you get. Curr Biol 16:R56–R58.

    Article  PubMed  CAS  Google Scholar 

  • Dormer KJ (1980) Fundamental tissue geometry for biologists. Cambridge University Press, Cambridge.

    Google Scholar 

  • Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120:3247–3255.

    CAS  Google Scholar 

  • Erickson RO (1959) Patterns of cell growth and differentiation in plants. In: Brachet J, Mirsky AE (eds) The cell, vol 1. Academic Press, New York, pp 497–535.

    Google Scholar 

  • Geitler L (1960) Schizophyceen. Handbuch der Pflanzenanatomie, vol VI/1. Gebrüder Borntraeger, Berlin-Nikolassee.

    Google Scholar 

  • Giddings TH, Staehelin LA (1978) Plasma membrane architecture of Anabaena cylindrica: occurrence of microplasmodesmata and changes associated with heterocyst development and the cell cycle. Cytobiologie 16:235–249.

    Google Scholar 

  • Gilbert D, Lloyd D (2000) The living cell: a complex autodynamic multi-oscillator system? Cell Biol Int 24:569–580.

    Article  PubMed  CAS  Google Scholar 

  • Golden JW, Yoon H-S (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6:567–573.

    Google Scholar 

  • Golubi´c S (1967) Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumuna). Int Rev gesamt Hydrobiol 52:693–699.

    Article  Google Scholar 

  • Greb T, Clarenz O, Schäfer E, Müller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–1187.

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES, Hughes JE, Hardham AR (1978) Formative and proliferative divisions, cell differentiation, and developmental changes in the meristem of Azolla roots. Planta 143:121–144.

    Article  Google Scholar 

  • Hallé F, Martin R (1968) Étude de la croissance rythmique chez l'Hévéa (Hevea brasiliensis Müll.-Arg. Euphorbiacées–Crotonoïdées). Adansonia sér 2 8:475–503.

    Google Scholar 

  • Haupt AW (1923) Cell structure and cell division in the Cyanophyceae. Bot Gaz 75:170–190.

    Article  Google Scholar 

  • Huo G-C, Hill JP (2004) Developmental anatomy of the fifth shoot-borne root in young sporophytes of Ceratopteris richardii. Planta 219:212–220.

    Article  Google Scholar 

  • Iwamoto A, Satoh D, Furutani M, Maruyama S, Ohba H, Sugiyama M (2006) Insight into the basis of root growth in Arabidopsis thaliana provided by a simple mathematical model. J Plant Res 119:85–93.

    Article  PubMed  Google Scholar 

  • Jönsson H, Heisler M, Reddy GV, Agrawal V, Gor V, Shapiro BE, Mjolsness E, Meyerowitz EM (2005) Modelling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21 suppl 1:i232–i240.

    Article  Google Scholar 

  • Kessin RH (2001) Dictyostelium. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342.

    Article  PubMed  CAS  Google Scholar 

  • Korn RW, Spalding RM (1973) The geometry of plant epidermal cells. New Phytol 72:1357–1365.

    Article  Google Scholar 

  • Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA 3 and its sequestration by CLAVATA 1. Development 130:3163–3173.

    Article  PubMed  CAS  Google Scholar 

  • Lindenmayer A (1971) Developmental systems without cellular interactions: their languages and grammars. J Theor Biol 30:455–484.

    Article  PubMed  CAS  Google Scholar 

  • Lindenmayer A (1982) Developmental algorithms: lineage versus interactive control mechanisms. In: Subtelny S, Green PB (eds) Developmental order: its origin and regulation. AR Liss, New York, pp 219–245.

    Google Scholar 

  • Lindenmayer A, Jürgensen H (1992) Grammars of development: discrete state models for growth, differentiation and gene expression in modular organisms. In: Rozenberg G, Salomaa A (eds) Lindenmayer systems. Impacts on theoretical computer science, computer graphics, and developmental biology. Springer, Berlin Heidelberg New York, pp 3–21.

    Google Scholar 

  • Lück J, Lück HB (1985) Comparative plant morphogenesis founded on map and stereomap generating systems. In: Demongeot J, Golès E, Tchuente M (eds) Dynamical systems and cellular automata. Academic Press, London, pp 111–121.

    Google Scholar 

  • Lück J, Lück HB (1991) Petri nets applied to experimental plant morphogenesis. Acta Biotheor 39:235–252.

    Article  Google Scholar 

  • Lück HB, Lück J (1993) About automata theoretical models for phyllotaxis in a global morphogenetic framework. In: Greppin H, Bonzon M, Degli Agosti R (eds) Some physicochemical and mathematical tools for understanding of living systems. University of Geneva Press, Geneva, pp 333–359.

    Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PC (1911) Life. In: Encyclopedia Brittanica, 11th edn. Cambridge University Press, Cambridge, pp 600–601.

    Google Scholar 

  • Mitchison GM, Wilcox M (1972) Rule governing cell division in Anabaena. Nature 239:110–111.

    Article  Google Scholar 

  • Mitchison GM, Wilcox M, Smith RJ (1976) Measurement of an inhibitory zone. Science 191:866–868.

    Article  PubMed  CAS  Google Scholar 

  • Morgenthal K, Weckworth W, Steuer R (2006) Metabolomic networks in plants: transitions from pattern recognition to biological interpretation. BioSystems 83:108–117.

    Article  PubMed  CAS  Google Scholar 

  • Notov A (2005) Functional organization and individual development of modular objects. Wulfenia 12:65–85.

    Google Scholar 

  • Nougarède A (1967) Experimental cytology of shoot apical cells during vegetative growth and flowering. Int Rev Cytol 21:203–351.

    Article  PubMed  Google Scholar 

  • Palevitz BA, Hepler PK (1985) Changes in the dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer yellow. Planta 164:473–479.

    Article  Google Scholar 

  • Paluch E, Sykes C, Prost J, Bornens M (2006) Dynamics modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16:5–10.

    Article  PubMed  CAS  Google Scholar 

  • Petri CA (1980) Introduction to general net theory. Lecture Notes Comp Sci 84:1–19.

    Google Scholar 

  • Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310:663–667.

    Article  PubMed  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUCHSEL genes. Cell 100:635–644.

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Fletcher JC (2002) Maintenance of shoot and floral meristem cell proliferation and fate. Plant Physiol 129:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson PB (1969) On the morphology and anatomy of turtle grass, Thalassia testudinum (Hydrocharitaceae). II. Anatomy and development of the root in relation to function. Bull Mar Sci 19:57–71.

    Google Scholar 

  • Veit B (2004) Determination of cell fate in apical meristems. Curr Opin Plant Biol 7:57–64.

    Article  PubMed  CAS  Google Scholar 

  • Vernoux T, Benfey PN (2005) Signals that regulate stem cell activity during plant development. Curr Opin Genet Dev 15:388–394.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox M (1970) One-dimensional pattern found in blue-green algae. Nature 228:686–687.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox M, Mitchison GJ, Smith RJ (1973) Pattern formation in the blue-green alga, Anabaena. I. Basic mechanisms. J Cell Sci 12:707–723.

    PubMed  CAS  Google Scholar 

  • Zhao Y, Medrano L, Ohashi K, Fletcher JC, Yu H, Sakai H, Meyerowitz EM (2004) HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell 16:2586–2600.

    Article  PubMed  CAS  Google Scholar 

  • Zobel A (1985) The internode of Sambucus racemosa L. originates from a single cell layer. Ann Bot 56:105–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barlow, P.W., Lück, J. (2007). Rhythms and Morphogenesis. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68071-0_11

Download citation

Publish with us

Policies and ethics