Skip to main content

Rhythmic Leaf Movements: Physiological and Molecular Aspects

  • Chapter
Rhythms in Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MRG, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. PNAS 101:15621–15626.

    Article  PubMed  CAS  Google Scholar 

  • Berg VS (1986) Solar tracking: light avoidance induced by water stress in leaves of kidney bean seedlings in the field. Crop Sci 26:980–986.

    Article  Google Scholar 

  • Bialczyk J, Lechowski Z (1987) The effect of abscisic acid and fusicoccin on malic acid concentration in pulvini of Phaseolus coccineus L. New Phytol 105:469–475.

    Article  CAS  Google Scholar 

  • Bihler H, Eing C, Hebeisen SRA, Czempinski K, Bertl A (2005) TPK1 is a vacuolar ion channel different from the Slow-Vacuolar cation channel. Plant Physiol 139:417–424.

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR (1992) K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH. J Gen Physiol 99:615–644.

    Article  PubMed  CAS  Google Scholar 

  • Bourbouloux A, Roblin G, Fleurat-Lessard P (1992) Calcium involvement in the IAA-induced leaflet opening of Cassia fasciculata. J Exp Bot 43:63–71.

    Article  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210.

    Article  PubMed  CAS  Google Scholar 

  • Brock TG (1993) Hormone trafficking. A case study of growth regulator dynamics. Physiol Plant 89:237–241.

    Article  CAS  Google Scholar 

  • Cantero A, Barthakur S, Bushart TJ, Chou S, Morgan RO, Fernandez MP, Clark GB, Roux SJ (2006) Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol Biochem 44:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Cote GG, Yueh YG, Crain RC (1996) Phosphoinositide turnover and its role in plant signal transduction. In: Biswas BB, Biswas B (eds) Myoinositol-phosphates, phosphoinositides and signal transduction, vol 26. Plenum Press, London, pp 317–343.

    Google Scholar 

  • Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724–737.

    Article  PubMed  CAS  Google Scholar 

  • Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Mueller-Roeber B (2002) Vacuolar membrane localization of the Arabidopsis ‘two-pore’ K+ channel KCO1. Plant J 29: 809–820.

    Article  PubMed  CAS  Google Scholar 

  • De Mairan J-JDO (1729) Observation botanique. Histoire de l'Académie Royale des Sciences, Paris, pp 35–36.

    Google Scholar 

  • Dodd AN, Love J, Webb AAR (2005) The plant clock shows its metal: circadian regulation of cytosolic free Ca2+. Trends Plant Sci 10:15.

    Article  PubMed  CAS  Google Scholar 

  • Donahue R, Berg VS (1990) Leaf orientation of soybean seedlings: II. Receptor sites and light stimuli. Crop Sci 30:638–643.

    Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362.

    Article  PubMed  CAS  Google Scholar 

  • Drobak BK, Dewey RE, Boss WF (1999) Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells. Int Rev Cytol Surv Cell Biol 189:95–130.

    CAS  Google Scholar 

  • Engelmann W, Antkowiak B (1998) Ultradian rhythms in Desmodium. Chronobiol Int 15: 293–307.

    Article  PubMed  CAS  Google Scholar 

  • Fan LM, Zhao Z, Assmann SM (2004) Guard cells: a dynamic signalling model. Curr Opin Plant Biol 7:537–546.

    Article  PubMed  CAS  Google Scholar 

  • Fleurat-Lessard P, Schmit AC, Vantard M, Stoeckel H, Roblin G (1993) Characterization and immunocytochemical distribution of microtubules and F-actin filaments in protoplasts of Mimosa pudica motor cells. Plant Physiol Biochem 31:757–764.

    CAS  Google Scholar 

  • Fleurat-Lessard P, Frangne N, Maeshima M, Ratajczak R, Bonnemain J, Martinoia E (1997) Increased expression of vacuolar aquaporin and H+-ATPase related to motor cell function in Mimosa pudica L. Plant Physiol 114:827–834.

    PubMed  CAS  Google Scholar 

  • Fromm J, Eschrich W (1988a) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. I. The movement of 14C-labelled photoassimilates. Trees Structure Function 2:7–17.

    Google Scholar 

  • Fromm J, Eschrich W (1988b) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. II. Energesis and transmission of seismic stimulation. Trees Structure Function 2:18–24.

    Google Scholar 

  • Fromm J, Eschrich W (1988c) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. III. Displacement of ions during seismonastic leaf movements. Trees Structure Function 2:65–72.

    Google Scholar 

  • Garrill A, Tyerman SD, Findlay GP, Ryan PR (1996) Effects of NPPB and niflumic acid on outward K+ and Cl- currents across the plasma membrane of wheat root protoplasts. Austral J Plant Physiol 23:527–534.

    Article  CAS  Google Scholar 

  • Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371.

    PubMed  CAS  Google Scholar 

  • Gomez LA, Simon E (1995) Circadian rhythm of Robinia pseudoacacia leaflet movements: role of calcium and phytochrome. Photochem Photobiol 61:210–215.

    Article  CAS  Google Scholar 

  • Gomez LA, Moysset L, Simon E (1999) Effects of calmodulin inhibitors and blue light on rhythmic movement of Robinia pseudoacacia leaflets. Photochem Photobiol 69:722–727.

    Article  CAS  Google Scholar 

  • Gorton HL (1990) Pulvinar water relations in nyctinastic plants. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement, vol 3. ASPP, Rockville, MD, pp 214–222.

    Google Scholar 

  • Gorton HL, Satter RL (1984) Extensor and flexor protoplasts from Samanea pulvini: II. X-ray analysis of potassium, chlorine, sulfur, phosphorus, and calcium. Plant Physiol 76:685–690.

    Article  PubMed  CAS  Google Scholar 

  • Harada A, Sakai T, Okada K (2003) phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA 100:8583–8588.

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann A, Proust J, Dorowski A, Schantz R, Huber R (2000) Annnexin 24 from Capsicum annuum. X-ray structure and biochemical characterization. J Biol Chem 275:8072–8082.

    Article  PubMed  CAS  Google Scholar 

  • Hoshino D, Hayashi A, Temmei Y, Kanzawa N, Tsuchiya T (2004) Biochemical and immunohistochemical characterization of Mimosa annexin. Planta 219:867–875.

    Article  PubMed  CAS  Google Scholar 

  • Hudson M, Smith H (1998) The phytochrome B encoded by the HLG locus of Nicotiana plumbaginifolia is required for detection of photoperiod: hlg mutants show altered regulation of flowering and circadian movement. Plant J 15:281–287.

    Article  CAS  Google Scholar 

  • Hwang JU, Suh S, Yi HJ, Kim J, Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol 115:335–342.

    PubMed  CAS  Google Scholar 

  • Iglesias A, Satter RL (1983) H+ fluxes in excised Samanea motor tissue. I. Promotion by light. Plant Physiol 72:564–569.

    CAS  Google Scholar 

  • Iino M, Long C, Wang XJ (2001) Auxin- and abscisic acid-dependent osmoregulation in protoplasts of Phaseolus vulgaris pulvini. Plant Cell Physiol 42:1219–1227.

    Article  PubMed  CAS  Google Scholar 

  • Ilan N, Schwartz A, Moran N (1996) External protons enhance the activity of the hyperpolarization-activated K channels in guard cell protoplasts of Vicia faba. J Membr Biol 154:169–181.

    Article  PubMed  CAS  Google Scholar 

  • Inoue S-i, Kinoshita T, Shimazaki K-i (2005) Possible Involvement of phototropins in leaf movement of kidney bean in response to blue light. Plant Physiol. 138:1994–2004.

    Article  PubMed  CAS  Google Scholar 

  • Irving MS, Ritter S, Tomos AD, Koller D (1997) Phototropic response of the bean pulvinus: movement of water and ions. Bot Acta 110:118–126.

    CAS  Google Scholar 

  • Jaensch L, Findlay GP (1998) Ion channels in the plasma membrane of Phaseolus motor cells. In: Tester M, Morris C, Davies J (eds) Abstr Vol 11th Int Worksh Plant Membrane Biology. Springer, Cambridge, UK, p 148.

    Google Scholar 

  • Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410:487–490.

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Halen A, Trewavas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863–1864.

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Assmann SM (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572–578.

    Article  PubMed  CAS  Google Scholar 

  • Kallas P, Meier Augenstein W, Schildknecht H (1990) The structure-activity relationship of the turgorin PLMF 1 in the sensitive plant Mimosa pudica L.: in vitro binding of (carbon-14 carboxyl)-PLMF 1 to plasma membrane fractions from mimosa leaves and bioassays with PLMF 1-isomeric compounds. J Plant Physiol 136:225–230.

    CAS  Google Scholar 

  • Kanzawa N, Hoshino Y, Chiba M, Hoshino D, Kobayashi H, Kamasawa N, Kishi Y, Osumi M, Sameshima M, Tsuchiya T (2006) Change in the actin cytoskeleton during seismonastic movement of Mimosa pudica. Plant Cell Physiol 47:531–539.

    Article  PubMed  CAS  Google Scholar 

  • Kayali S, Greppin H, Agosti RD (1997) Effect of EGTA on the diurnal leaf movement of Phaseolus vulgaris. Plant Physiol Biochem 35:915–922.

    CAS  Google Scholar 

  • Kim HY, Cote GG, Crain RC (1992) Effects of light on the membrane potential of protoplasts from Samanea saman pulvini. Involvement of K+ channels and the H+-ATPase. Plant Physiol 99:1532–1539.

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Cote GG, Crain RC (1993) Potassium channels in Samanea saman protoplasts controlled by phytochrome and the biological clock. Science 260:960–962.

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Cote GG, Crain RC (1996) Inositol 1, 4, 5-trisphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta 198:279–287.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Shimazaki K (1999) Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18:5548–5558.

    Article  PubMed  CAS  Google Scholar 

  • Kirilenko A, Pikula S, Bandorowicz-Pikula J (2006) Effects of mutagenesis of W343 in human annexin A6 isoform 1 on its interaction with GTP: nucleotide-induced oligomer formation and ion channel activity. Biochemistry 45:4965–4973.

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa K (1979) Unequal distribution of potassium and anions within the Phaseolus pulvinus during circadian leaf movement. Plant Cell Physiol 20:1621–1634.

    CAS  Google Scholar 

  • Koller DV (2001) Dynamic aspects of the response of the pulvinus in the leaf of bean plants (Phaseolus vulgaris L.) to photoexcitation. J Plant Physiol 158:347.

    Article  CAS  Google Scholar 

  • Koller D, Zamski E (2002) The phototropic pulvinus of bean Phaseolus vulgaris L. functional features. Plant Biol 4:584–594.

    Article  Google Scholar 

  • Koller D, Ritter S, Fork DC (1996) Light-driven movements of the trifoliate leaves of bean (Phaseolus vulgaris L.): spectral and functional analysis. J Plant Physiol 149:384–392.

    Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y (1990) Ion movements that control pulvinar curvature in nyctinastic legumes. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement, vol 3. ASPP, Rockville, MD, pp 130–138.

    Google Scholar 

  • Lee Y, Satter RL (1989) Effects of white, blue, red light and darkness on pH of the apoplast in the Samanea pulvinus. Planta 178:31–40.

    Article  Google Scholar 

  • Lee Y, Suh S-J, Moran N, Crain RC (1996) Phospholipid metabolism and light regulation of stomatal opening and leaf movement. In: Briggs WR, Heath RL, Tobin EM (eds) Regulation of plant growth and development by light. ASPP, Rockville, MD, pp 89–97.

    Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci USA 102:4203–4208.

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Li LG, Luan S (2005) An essential function of phosphatidylinositol phosphates in activation of plant shaker-type K+ channels. Plant J 42:433–443.

    Article  PubMed  CAS  Google Scholar 

  • Love J, Dodd AN, Webb AAR (2004) Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 16:956–966.

    Article  PubMed  CAS  Google Scholar 

  • Lowen CZ, Satter RL (1989) Light-promoted changes in apoplastic K+ activity in the Samanea saman pulvinus, monitored with liquid membrane microelectrodes. Planta 179:421–427.

    Article  Google Scholar 

  • Ma XH, Davis AJ, Im YJ, Perera IY, Boss WF, Moshelion M, Moran N (2005) The osmotic water permeability of the plasma membrane modified by membrane phospholipids in cultured tobacco cell protoplasts. In: Abstr Vol Int Conf Plant Lipid-Mediated Signalling. NCSU, Raleigh, NC, p 53.

    Google Scholar 

  • Mayer WE, Fischer C (1994) Protoplasts from Phaseolus coccineus L. pulvinar motor cells show circadian volume oscillations. Chronobiol Int 11:156–164.

    Article  PubMed  CAS  Google Scholar 

  • Mayer WE, Ruge WA, Starrach N, Hampp R (1987) Chloride availability affects the malate content and its control by the circadian clock in pulvini of Phaseolus-coccineus L. J Biosci 42:553–558.

    CAS  Google Scholar 

  • Mayer WE, Hohloch C, Kalkuhl A (1997) Extensor protoplasts of the Phaseolus pulvinus: light-induced swelling may require extracellular Ca2+ influx, dark-induced shrinking – inositol 1, 4, 5-trisphosphate-induced Ca2+ mobilization. J Exp Bot 48:219–228.

    Article  CAS  Google Scholar 

  • Mayer WE, Bok B, Rieger A (1999) Age-dependent changes of the ion content and the circadian leaf movement period in the Phaseolus pulvinus. J Biosci 24:199–206.

    Article  CAS  Google Scholar 

  • Memon AR, Boss WF (1990) Rapid light-induced changes in phosphoinositide kinases and H+-ATPase in plasma membrane of sunflower hypocotyls. J Biol Chem 265:14817–14821.

    PubMed  CAS  Google Scholar 

  • Millet B, Botton AM, Hayoum C, Koukkari WL (1988) An experimental analysis and comparison of 3 rhythms of movements in bean (Phaseolus vulgaris L). Chronobiol Int 5:187–193.

    Article  PubMed  CAS  Google Scholar 

  • Millet B, Coillot L, Agosti RD (1989) The rhythmic leaf movements after regeneration of partially excised pulvinus in Phaseolus vulgaris L. Plant Cell Physiol 30:643–648.

    Google Scholar 

  • Mizuno T (2004) Plant response regulators implicated in signal transduction and circadian rhythm. Curr Opin Plant Biol 7:499–505.

    Article  PubMed  CAS  Google Scholar 

  • Montague MJ (1995) Hormonal and gravitropic specificity in the regulation of growth and cell wall synthesis in pulvini and Internodes from shoots of Avena sativa L. (Oat). Plant Physiol 107:553–564.

    PubMed  CAS  Google Scholar 

  • Montague MJ (1997) Exogenous jasmonic and abscisic acids act differentially in elongating tissues from oat stem segments. J Plant Growth Reg 16:11–19.

    Article  CAS  Google Scholar 

  • Moran N (1996) Membrane-delimited phosphorylation enables the activation of the outward-rectifying K channels in a plant cell. Plant Physiol 111:1281–1292.

    PubMed  CAS  Google Scholar 

  • Moran N, Ehrenstein G, Iwasa K, Mischke C, Bare C, Satter RL (1988) Potassium channels in motor cells of Samanea saman: a patch-clamp study. Plant Physiol 88:643–648.

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Fox D, Satter RL (1990) Interaction of the depolarization-activated K channel of Samanea saman with inorganic ions: a patch-clamp study. Plant Physiol 94:424–431.

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Yueh YG, Crain RC (1996) Signal transduction and cell volume regulation in plant leaflet movements. News Physiol Sci 11:108–114.

    CAS  Google Scholar 

  • Morillon R, Catterou M, Sangwan RS, Sangwan BS, Lassalles JP (2001) Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta 212:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Morse MJ, Satter RL (1979) Relationship between motor cell ultrastructure and leaf movement in Samanea saman. Physiol Plant 46:338–346.

    Article  Google Scholar 

  • Morse MJ, Crain RC, Satter RL (1987) Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini. Proc Natl Acad Sci USA 84:7075–7078.

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Moran N (2000) K+-efflux channels in extensor and flexor cells of Samanea saman are not identical. Effects of cytosolic Ca2+. Plant Physiol 124:911–919.

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R (2002a) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739.

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B, Hedrich R, Moran N (2002b) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642.

    Article  PubMed  CAS  Google Scholar 

  • Moyen C, Cognard C, Fleurat Lessard P, Raymond G, Roblin G (1995) Calcium mobilization under a UV-A irradiation in protoplasts isolated from photosensitive pulvinar cells of Mimosa pudica. J Photochem Photobiol 29:59–63.

    Article  CAS  Google Scholar 

  • Moysset L, Simon E (1989) Role of calcium in phytochrome-controlled nyctinastic movements of Albizzia lophantha leaflets. Plant Physiol 90:1108–1114.

    Article  PubMed  CAS  Google Scholar 

  • Moysset L, Sugranes SL, Simon E (1991) Changes in morphometry and elemental composition of Robinia pseudoacacia pulvinar motor cells during leaflet movements. J Exp Bot 42:1315–1324.

    Article  Google Scholar 

  • Moysset L, Fernandez E, Cortadellas N, Simon E (2001) Intracellular localization of phytochrome in Robinia pseudoacacia pulvini. Planta 213:565–574.

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki Y (1990) Effects of anoxia and red light on changes induced by blue light in the membrane potential of pulvinar motor cells and leaf movement in Phaseolus vulgaris. Plant Cell Physiol 31:591–596.

    Google Scholar 

  • Nishizaki Y (1994) Vanadate and dicyclohexylcarbodiimide inhibit the blue light-induced depolarization of the membrane in pulvinar motor cells of Phaseolus. Plant Cell Physiol 35:841–844.

    CAS  Google Scholar 

  • Nishizaki Y, Kubota M, Yamamiya K, Watanabe M (1997) Action spectrum of light pulse-induced membrane depolarization in pulvinar motor cells of Phaseolus. Plant Cell Physiol 38:526–529.

    CAS  Google Scholar 

  • Nozue K, Maloof JN (2006) Diurnal regulation of plant growth. Plant Cell Environ 29:396–408.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y (2002) Blue light inactivates plasma membrane H+-ATPase in pulvinar motor cells of Phaseolus vulgaris L. Plant Cell Physiol 43:860–868.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Nishizaki Y, Iwasaki N (1995) Effects of a pulse of blue light on the extracellular pH in the pulvinus of Phaseolus vulgaris L.: measurements with a double-barreled pH-sensitive electrode. Plant Cell Physiol 36:1131–1134.

    CAS  Google Scholar 

  • Pei Z-M, Kuchitsu K (2005) Early ABA signalling events in guard cells. J Plant Growth Reg 24:296.

    Article  CAS  Google Scholar 

  • Pfeffer WF (1877) Osmotische Untersuchungen: Studien zur Zellmechanik (Osmotic investigations: studies on cell mechanics). Engelmann, Leipzig.

    Google Scholar 

  • Racusen R, Satter RL (1975) Rhytmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini. Nature 255:408–410.

    Article  PubMed  CAS  Google Scholar 

  • Roblin G, Fleurat-Lessard P, Bonmort J (1989) Effects of compounds affecting calcium channels on phytochrome- and blue pigment-mediated pulvinar movements of Cassia fasciculata. Plant Physiol 90:697–701.

    Article  PubMed  CAS  Google Scholar 

  • Ruoff P, Rensing L, Kommedal R, Mohsenzadeh S (1997) Modeling temperature compensation in chemical and biological oscillators. Chronobiol Int 14:499–510.

    Article  PubMed  CAS  Google Scholar 

  • Salome PA, Michael TP, Kearns EV, Fett-Neto AG, Sharrock RA, McClung CR (2002) The out-of-phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. Plant Physiol 129:1674–1685.

    Article  PubMed  CAS  Google Scholar 

  • Satter RL, Galston AW (1974) Potassium flux: a common feature of Albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science 174:518–520.

    Article  Google Scholar 

  • Satter RL, Galston AW (1981) Mechanisms of control of leaf movements. Annu Rev Plant Physiol 32:83–110.

    Article  CAS  Google Scholar 

  • Satter RL, Guggino SE, Lonergan TA, Galston AW (1981) The effects of blue and far-red light on rhythmic movements in Samanea and Albizzia. Plant Physiol 67:965–968.

    Article  PubMed  CAS  Google Scholar 

  • Satter RL, Garber RC, Khairallah L, Cheng YS (1982) Elemental analysis of freeze-dried thin sections of Samanea motor organs: barriers to ion diffusion through the apoplast. J Cell Biol 95:893–902.

    Article  PubMed  CAS  Google Scholar 

  • Satter RL, Xu YJ, Depass A (1987) Effects of temperature on H+-secretion and uptake by excised flexor cells during dark-induced closure of Samanea leaflets. Plant Physiol 85:850–855.

    Article  PubMed  CAS  Google Scholar 

  • Satter RL, Gorton HL, Vogelmann TC (eds) (1990) The pulvinus: motor organ for leaf movement, vol 3. ASPP, Rockville, MD.

    Google Scholar 

  • Schildknecht H, Meier-Augenstein W (1990) Role of turgorins in leaf movement. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement, vol 3. ASPP, Rockville, MD, pp 205–213.

    Google Scholar 

  • Schumaker KS, Sze H (1987) Inositol 1, 4, 5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J Biol Chem 262:3944–3946.

    PubMed  CAS  Google Scholar 

  • Setty S, Jaffe MJ (1972) Phytochrome-controlled rapid contraction and recovery of contractile vacuoles in the motor cells of Mimosa pudica as an intracellular correlate of nyctinasty. Planta 108:121.

    Article  Google Scholar 

  • Shacklock PS, Read ND, Trewavas AJ (1992) Cytosolic free calcium mediates red-light induced phototomorphogenesis. Nature 358:753–755.

    Article  CAS  Google Scholar 

  • Shimazaki K, Iino M, Zeiger E (1985) Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. Nature 319:324–326.

    Article  Google Scholar 

  • Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37:147–155.

    PubMed  CAS  Google Scholar 

  • Simon E, Satter RL, Galston AW (1976) Circadian rhythmicity in excised Samanea pulvini. II. Resetting the clock by phytochrome conversion. Plant Physiol 58:421–425.

    CAS  Google Scholar 

  • Starrach N, Meyer W-E (1989) Changes of the apoplastic pH and K+ concentration in the Phaseolus pulvinus in situ in relation to rhythmic leaf movements. J Exp Bot 40:865–873.

    Article  CAS  Google Scholar 

  • Stevenson JM, Pepera IY, Heilmann I, Persson S, Boss WF (2000) Inositol signalling and plant growth. Trends Plant Sci 5:252–258.

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel H, Takeda K (1993) Plasmalemmal, voltage-dependent ionic currents from excitable pulvinar motor cells of Mimosa pudica. J Membr Biol 131:179–192.

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel H, Takeda K (1995) Calcium-sensitivity of the plasmalemmal delayed rectifier potassium current suggests that calcium influx in pulvinar protoplasts from Mimosa pudica L. can be revealed by hyperpolarization. J Membr Biol 146:201–209.

    PubMed  CAS  Google Scholar 

  • Suh S, Moran N, Lee Y (2000) Blue light activates depolarization-dependent K+ channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol 123:833–843.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney BM (1987) Rhythmic phenomena in plants, 2nd edn. Academic Press, San Diego, CA.

    Google Scholar 

  • Temmei Y, Uchida S, Hoshino D, Kanzawa N, Kuwahara M, Sasaki S, Tsuchiya T (2005) Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett 579:4417–4422.

    Article  PubMed  CAS  Google Scholar 

  • Toriyama H, Jaffe MJ (1972) Migration of calcium and its role in the regulation of seismonasty in the motor cells of Mimosa pudica L. Plant Physiol 49:72–81.

    Article  PubMed  CAS  Google Scholar 

  • Varin L, Chamberland H, Lafontaine Jean G, Richard M (1997) The enzyme involved in sulfation of the turgorin, gallic acid 4-O-(beta-D-glucopyranosyl-6¢-sulfate) is pulvini-localized in Mimosa pudica. Plant J 12:831–837.

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748.

    Article  PubMed  CAS  Google Scholar 

  • Wang H (2005) Signalling mechanisms of higher plant photoreceptors: a structure-function perspective. In: Schatten GP (ed) Current Topics in Developmental Biology, vol 68. Academic Press, New York, pp 227–261.

    Google Scholar 

  • Wang X, Haga K, Nishizaki Y, Iino M (2001) Blue-light-dependent osmoregulation in protoplasts of Phaseolus vulgaris pulvini. Plant Cell Physiol 42:1363–1372.

    Article  PubMed  CAS  Google Scholar 

  • Wetherell DF (1990) Leaf movements in plants without pulvini. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement, vol 3. ASPP, Rockville, MD, pp 72–78.

    Google Scholar 

  • White PJ, Bowen HC, Demidchik V, Nichols C, Davies JA (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta Biomembr 1564:299–309.

    Article  CAS  Google Scholar 

  • Wood NT, Haley A, Viry-Moussaid M, Johnson CH, van der Luit AH, Trewavas AJ (2001) The calcium rhythms of different cell types oscillate with different circadian phases. Plant Physiol 125:787–796.

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky MJ, Mazzella MA, Casal JJ (2000) A quadruple photoreceptor mutant still keeps track of time. Curr Biol 10:1013–1015.

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Moshelion M, Moran N (2001) Extracellular protons inhibit the activity of inward-rectifying K channels in the motor cells of Samanea saman pulvini. Plant Physiol 127:1310–1322.

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Becker D, Levi H, Moshelion M, Hedrich R, Lotan I, Moran A, Pick U, Naveh L, Libal Y, Moran N (2006) Phosphorylation of SPICK2, an AKT2 channel homologue from Samanea motor cells. J Exp Bot DOI 10.1093/jxb/erl1104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moran, N. (2007). Rhythmic Leaf Movements: Physiological and Molecular Aspects. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68071-0_1

Download citation

Publish with us

Policies and ethics