Skip to main content

Studying Cognition with Positron Emission Tomography

  • Chapter
Neural Correlates of Thinking

Part of the book series: On Thinking ((ONTHINKING,volume 1))

  • 1160 Accesses

Abstract

Positron emission tomography (PET) is essentially the only method for directly measuring neurotransmitter function in vivo in the human brain. While PET has been supplanted by functional magnetic resonance imaging for the purpose of brain mapping, much information about cognitive function can still be gleaned from studies of specific neurotransmitter function. We will introduce the methodology and give examples of studies involving one neurotransmitter (dopamine). Dopamine has been linked to motivation and reward, processes that belong entirely to the realm of what we refer to as thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Aston JA, Gunn RN, Worsley KJ, Ma Y, Evans AC, Dagher A (2000) A statistical method for the analysis of positron emission tomography neuroreceptor ligand data. Neuroimage 12:245–256

    Article  PubMed  CAS  Google Scholar 

  • Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A (2004) The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse 54:65–71

    Article  PubMed  CAS  Google Scholar 

  • Bechara A (2005) Decision making, impulse control and loss of willpower to resist drugs: a neu-rocognitive perspective. Nat Neurosci 8:1458–1463

    Article  PubMed  CAS  Google Scholar 

  • Boileau I, Assaad JM, Pihl RO, Benkelfat C, Leyton M, Diksic M, Tremblay RE, Dagher A (2003) Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 49:226–231

    Article  PubMed  CAS  Google Scholar 

  • Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, Benkelfat C (2006) Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry 63:1386–1395

    Article  PubMed  CAS  Google Scholar 

  • Boileau I, Dagher A, Leyton M, Welfeld K, Booij L, Diksic M, Benkelfat C (2007) Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine. J Neurosci 27:3998–4003

    Article  PubMed  CAS  Google Scholar 

  • Booij J, Tissingh G, Winogrodzka A, van Royen EA (1999) Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 26:171–182

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  • Cloninger CR (1994) Temperament and personality. Curr Opin Neurobiol 4:266–273

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ (2001) Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293:1164–1166

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • Endres CJ, Kolachana BS, Saunders RC, Su T, Weinberger D, Breier A, Eckelman WC, Carson RE (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17:932–942

    Article  PubMed  CAS  Google Scholar 

  • Evans AH, Pavese N, Lawrence AD, Tai YF, Appel S, Doder M, Brooks DJ, Lees AJ, Piccini P (2006) Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 59:852–858

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 36:129–138

    Article  PubMed  CAS  Google Scholar 

  • Frey KA, Koeppe RA, Kilbourn MR, Vander Borght TM, Albin RL, Gilman S, Kuhl DE (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40:873–884

    Article  PubMed  CAS  Google Scholar 

  • Gall FJ (1825) Sur les fonctions du cerveau et sur celles de chacune de ses parties: avec des observations sur la possibilité de reconnaitre les instincts, les penchans, les talens, ou les dispositions morales et intellectuelles des hommes et des animaux, par la configuration de leur tête. Balliere, Paris

    Google Scholar 

  • Garnett ES, Nahmias C, Firnau G (1984) Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography. Can J Neurol Sci 11:174–179

    PubMed  CAS  Google Scholar 

  • Ginovart N, Farde L, Halldin C, Swahn CG (1997) Effect of reserpine-induced depletion of synaptic dopamine on [11C]raclopride binding to D2-dopamine receptors in the monkey brain. Synapse 25:321–325

    Article  PubMed  CAS  Google Scholar 

  • Ingvar DH, Risberg J (1967) Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Exp Brain Res 3:195–211

    Article  PubMed  CAS  Google Scholar 

  • Lamelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Google Scholar 

  • Laruelle M, Iyer RN, al-Tikriti MS, Zea-Ponce Y, Malison R, Zoghbi SS, Baldwin RM, Kung HF, Charney DS, Hoffer PB, Innis RB, Bradberry CW (1997) Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25:1–14

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Boileau I, Benkelfat C, Diksic M, Baker G, Dagher A (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking. A PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Marek K, Jennings D, Scibyl J (2003) Single-photon emission tomography and dopamine transporter imaging in Parkinson’s disease. Adv Neurol 91:183–191

    PubMed  Google Scholar 

  • Milner PM (1991) Brain-stimulation reward: a review. Can J Psychol 45:1–36

    PubMed  CAS  Google Scholar 

  • Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee J, Christian BT, Dunigan KA, Shi B, Narayanan TK, Satter M, Mantil J (2002) Brain imaging of 18F-fallypride in normal volunteers: Blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46:170–188

    Article  PubMed  CAS  Google Scholar 

  • Noble EP (2000) The DRD2 gene in psychiatric and neurological disorders and its phenotypes. Pharmacogenomics 1:309–333

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Paulson PE, Robinson TE (1995) Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse 19:56–65

    Article  PubMed  CAS  Google Scholar 

  • Penfield W, Von Santha K, Cipriani A (1939) Cerebral blood flow during induced epileptiform seizures in animals and man. J Neurophysiol 2:257–267

    Article  Google Scholar 

  • Piazza PV, Deminiere JM, Maccari S, Mormede P, Le Moal M, Simon H (1990) Individual reactivity to novelty predicts probability of amphetamine self-administration. Behav Pharmacol 1:339–345

    PubMed  Google Scholar 

  • Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Pruessner JC, Champagne F, Meaney MJ, Dagher A (2004) Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J Neurosci 24:2825–2831

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME (1987) Circulatory and metabolic correlates of brain function in normal humans. In: Mountcastle VB (ed) Handbook of physiology, sect 1, vol 5. The nervous system. American Physiological Society, Bethesda, pp 643–674

    Google Scholar 

  • Raichle ME (2000) A brief history of human functional brain mapping. In: Toga AW, Mazziotta JC (eds) Brain mapping: the systems. Academic, San Diego, pp 33–77

    Chapter  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M (2001) Changes in brain activity related to eating chocolate: From pleasure to aversion. Brain 124:1720–1733

    Article  PubMed  CAS  Google Scholar 

  • Small DM, Jones-Gotman M, Dagher A (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19:1709–1715

    Article  PubMed  Google Scholar 

  • Smith GS, Dewey SL, Brodie JD, Logan J, Vitkun SA, Simkowitz P, Schloesser R, Alexoff DA, Hurley A, Cooper T, Volkow ND (1997) Serotonergic modulation of dopamine measured with [11C]raclopride and PET in normal human subjects. Am J Psychiatry 154:490–496

    PubMed  CAS  Google Scholar 

  • Sun W, Ginovart N, Ko F, Seeman P, Kapur S (2003) In vivo evidence for dopamine-mediated internalization of D(2)-receptors after amphetamine: differential findings with [(3)H]raclopride versus [(3)H]spiperone. Mol Pharmacol 63:456–462

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Dagher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dagher, A. (2009). Studying Cognition with Positron Emission Tomography. In: Kraft, E., Gulyás, B., Pöppel, E. (eds) Neural Correlates of Thinking. On Thinking, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68044-4_3

Download citation

Publish with us

Policies and ethics