Skip to main content

Nutrient Cycling Budgets in Managed Pastures

  • Chapter
Nutrient Cycling in Terrestrial Ecosystems

Part of the book series: Soil Biology ((SOILBIOL,volume 10))

Abstract

About 53 million km2, or 40% of the Earth’s land surface is grassland, containing about one-third of the global stock of terrestrial C. Grasslands are ecosystems where the dominant vegetation component is comprised of herbaceous species, with less than 10% tree cover (Jones and Donnelly 2004). Grasslands are either natural vegetation (e.g. the steppes of central Asia and prairies of North America) or anthropogenic in origin (e.g. north-western and central Europe, New Zealand, parts of North and South America and Australia). Grasslands are heavily relied upon for food and forage production, and about one-third of world milk and beef production occurs on grassland managed solely for these purposes (Conant et al. 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts HFM, Habekotte B, van Keulen H (2000a) Nitrogen (N) management in the ‘De Marke’ dairy farming system. Nutr Cycl Agroecosyst 56:231–240

    Article  Google Scholar 

  • Aarts HFM, Habekotte B, van Keulen H (2000b) Phosphorus (P) management in the ‘De Marke’ dairy farming system. Nutr Cycl Agroecosyst 56:219–229

    Article  Google Scholar 

  • Alfaro MA, Jarvis SC, Gregory PJ (2003) Potassium budgets in grassland systems as affected by nitrogen and drainage. Soil Use Manage 19:89–95

    Article  Google Scholar 

  • Avice JC, Ourry A, Lemaire G, Boucaud J (1996) Nitrogen and carbon flows estimated by N15 and C13 pulse-chase labelling during regrowth of alfalfa. Plant Physiol 112:281–290

    PubMed  CAS  Google Scholar 

  • Baron VS, Mapfumo E, Dick AC, Naeth MA, Okine EK, Chanasyk DS (2002) Grazing intensity impacts on pasture carbon and nitrogen flow. J Range Manage 55:535–541

    Google Scholar 

  • Bol R, Harkness DD, Huang Y, Howard DM (1999) 12C, 13C and 14C distribution and carbon turnover in three British upland soils. Eur J Soil Sci 50:41–52

    Article  Google Scholar 

  • Bol RE, Kandeler EW, Amelung WB, Glaser BMC, Marx MC, Preedy N, Lorenz K (2003a) Short-term effects of dairy slurry amendment on carbon sequestration and enzyme activities in temperate grassland. Soil Biol Biochem 35:1411–1421

    Article  CAS  Google Scholar 

  • Bol R, Moering J, Kuzyakov Y, Amelung W (2003b) Quantification of priming and CO2 respiration sources following slurry C incorporation in two grassland soils with different C content. Rapid Commun Mass Spectr 17:2585–2590

    Article  CAS  Google Scholar 

  • Bol R, Petersen SO, Dittert K, Christofides C, Hansen MN, Yamulki S (2004a) Short-term plant uptake, soil solution dynamics and fluxes of N2O, CO2 and NH3 in a temperate grassland after urine deposition. J Plant Nutr Soil Sci 167:568–576

    Article  CAS  Google Scholar 

  • Bol R, Amelung W, Friedrich C (2004b) Incorporation of dung-derived carbon in aggregate surface and core fractions of a temperate grassland soil. Eur J Soil Sci 55:71–77

    Article  Google Scholar 

  • Bolan NS, Rajan SSS (1993) Controlled-release phosphorus and sulphur fertilizers — preface. Fertil Res 35:v

    Article  Google Scholar 

  • Børsting CF, Kristensen T, Misciattelli L, Hvelplund T, Weisbjerg MR (2003) Reducing nitrogen surplus from dairy farms. Effects of feeding and management. Livestock Prod Sci 83:165–178

    Article  Google Scholar 

  • Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soils. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Brekken A, Steinnes E (2004) Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Sci Total Environ 326:181–195

    Article  PubMed  CAS  Google Scholar 

  • Bristow AW, Garwood EA (1984) Deposition of sulphur from the atmosphere and the sulphur balance in 4 soils under grass. J Agric Sci 103:463–468

    CAS  Google Scholar 

  • Brown L, Scholefield D, Jewkes EC, Preedy N, Wadge KJ, Butler MR (2000) The effect of sulphur application on the efficiency of nitrogen use in two contrasting grassland soils. J Agric Sci 135:131–138

    Article  CAS  Google Scholar 

  • Brown L, Scholefield D, Jewkes EC, Lockyer DR, del Prado A (2005) NGAUGE: a decision support system to optimise N fertilisation of British grassland for economic and environmental goals. Agric Ecosyst Environ 109:20–39

    Article  Google Scholar 

  • Carey PL, McLaren RG, Cameron KC, Sedcole JR (1996) Leaching of copper, chromium, and arsenic through some free-draining New Zealand soils. Aust J Soil Res 34:583–597

    Article  CAS  Google Scholar 

  • Carter MR (2001) Researching the agroecosystem/environmental interface. Agric Ecosyst Environ 83:3–9

    Article  Google Scholar 

  • Clark FE (1977) Internal cycling of N-15 in shortgrass prairie. Ecology 58:1322–1333

    Article  CAS  Google Scholar 

  • Clement CR, Williams TE (1967) Leys and soil organic matter. 2. Accumulation of nitrogen in soils under different leys. J Agric Sci 69:133–138

    Google Scholar 

  • Close ME, Woods PH (1986) Leaching losses from irrigated pasture — Waiau-Irrigation-Scheme, North Canterbury. N Z J Agric Res 29:339–349

    Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 1:343–355

    Article  Google Scholar 

  • Conant RT, Six J, Paustian K (2003) Land use effects on soil carbon fractions in the southeastern United States. I. Management-intensive versus extensive grazing. Biol Fertil Soils 38:386–392

    Article  CAS  Google Scholar 

  • Condron LM, Cameron KC, Di HJ, Clough TJ, Forbes EA, McLaren RG, Silva RG (2000) A comparison of soil and environmental quality under organic and conventional farming systems in New Zealand. N Z J Agric Res 43:443–466

    CAS  Google Scholar 

  • Cuttle SP, Bowling PJ (1999) Accounting for nutrients in an organic dairy farm. In: Corrall AJ (ed) Accounting for nutrients: a challenge for grassland farmers in the 21st century. Br Grassl Soc Occas Symp 33:149–150

    Google Scholar 

  • Cuttle SP, Jarvis SC (2005) Use of a systems synthesis approach to model nitrogen losses from dairy farms in south-west England. Grass Forage Sci 60:262–273

    Article  CAS  Google Scholar 

  • Cuttle SP, Hallard M, Gill EK, Scurlock RV (1996) Nitrate leaching from sheep-grazed upland pastures in Wales. J Agric Sci 127:365–375

    CAS  Google Scholar 

  • Cuttle SP, Scurlock RV, Davies BMS (1998) A 6-year comparison of nitrate leaching from grass/clover and N-fertilized grass pastures grazed by sheep. J Agric Sci 13:39–50

    Article  Google Scholar 

  • Cuttle SP, Scurlock RV, Davies BMS (2001) Comparison of fertilizer strategies for reducing nitrate leaching from grazed grassland, with particular reference to the contribution from urine patches. J Agric Sci 136:221–230

    Article  CAS  Google Scholar 

  • De Clerq P, Gertsis AC, Hofman G, Jarvis SC, Neeteson JJ, Sinabell F (eds) (2001) Nutrient management legislation in European countries. University of Wageningen, The Netherlands

    Google Scholar 

  • De Klein CAM, Ledgard SF (2001) An analysis of environmental and economic implications of nil and restricted grazing systems designed to reduce nitrate leaching from New Zealand dairy farms. I. Nitrogen losses. N Z J Agric Res 44:201–215

    Google Scholar 

  • Delgado CL (2005) Rising demand for meat and milk in developing countries: implications for grasslands-based livestock production. In: McGilloway DA (ed) Grasslands: a global resource, Proceedings of the 20th International Grasslands Congress. Wageningen, pp 29–39

    Google Scholar 

  • Del Prado A, Scholefield D, Chadwick D, Misselbrook T, Haygarth P, Hopkins A, Dewhurst R, Davison P, Lord E, Turner M, Aikman P, Schröder J (2006) A modelling framework to identify new integrated dairy production systems. 21st General Meeting on’ sustainable grassland productivity”, Badajoz, Spain, 3–6 April, European Grassland Federation

    Google Scholar 

  • Den Boer DJ, Vergeer WN (2001) Jaarplannen bemesting 2000 deelnemers Koeien & Kansen. NMI-report 215. Wageningen

    Google Scholar 

  • Dickinson CH, Craig G (1990) Effects of water on the decomposition and release of nutrients from cow pats. New Phytol 115:139–147

    Article  Google Scholar 

  • Dickinson CH, Underhay VSH, Ross V (1981) Effect of season, soil fauna, and water content on the decomposition of cattle dung pats. New Phytol 88:129–141

    Article  Google Scholar 

  • Donald CM, Prescott JA (1975) Trace elements in Australian crop and pasture production 1924–1974. In: Nicholas DJD, Egan AR (eds) Trace elements in soil-plant-animal systems. Academic, New York, pp 7–37

    Google Scholar 

  • Dungait JAJ, Bol R, Evershed RP (2005) Quantification of dung carbon incorporation in a temperate grassland soil following spring application using bulk stable carbon isotope determinations. Isotop Environ Health Stud 4:31–12

    Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in crop production. Adv Agron 77:185–268

    CAS  Google Scholar 

  • FAO (2003) World agriculture: towards 2015/2030. An FAO perspective. Bruinsma J (ed) Earthscan, London

    Google Scholar 

  • FAO (2005) Globalization and livestock. FAO website, http://www.fao.org/ag/magazine/0504sp1.htm

    Google Scholar 

  • Farruggia A, Gastal F, Scholefield D (2004) Assessment of the nitrogen status of grassland. Grass Forage Sci 59:113–120

    Article  CAS  Google Scholar 

  • Field TRO, Ball PR (1982) Nitrogen balance in an intensively utilised dairy system. Proc N Z Grass Assoc 43:64–69

    Google Scholar 

  • Follett RF, Schuman GE (2005) Grazing land contributions to carbon sequestration. In: McGilloway DA (ed) Grasslands: a global resource, Proceedings of the 20th International Grasslands Congress. Wageningen, pp 265–277

    Google Scholar 

  • Franzluebbers AJ (2005) Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA. Soil Till Res 83:120–147

    Article  Google Scholar 

  • Fraters B, Boumans LJM, Van Drecht G, De Haan T, De Hoop DW (1998) Nitrogen monitoring in groundwater in the sandy regions of The Netherlands. Environ Pollut 102:479–485

    Article  CAS  Google Scholar 

  • Garwood EA, Tyson KC (1973) Losses of nitrogen and other plant nutrients to drainage from soil under grass. J Agric Sci 80:303–312

    CAS  Google Scholar 

  • Garwood TWD, Mitchell RDJ, Chambers BJ, Webb J (1999) Nitrogen phosphate and potash budgets for grassland in England and Wales. Br Grass Soc Occas Symp 33:151–152

    Google Scholar 

  • Goodlass G, Halberg N, Verschuur G (2003) Input output accounting systems in the European community — an appraisal of their usefulness in raising awareness of environmental problems. Eur J Agron 20:17–24

    Article  Google Scholar 

  • Hagedorn F, Schleppi P, Waldner P, Fluhler H (2000) Export of dissolved organic carbon and nitrogen from Gleysol dominated catchments — the significance of water flow paths. Biogeochemistry 50:137–161

    Article  Google Scholar 

  • Hanegraf MC, Jan den Boer D (2003) Perspectives and limitations of the Dutch minerals accounting system (MINAS). Eur J Agron 20:25–31

    Article  Google Scholar 

  • Hansson AC, Petersson R (1989) Uptake and above-and below-ground allocation of soil mineral N and fertilizer 15N in a perennial grass ley (Festuca pratensis). J Appl Ecol 26:259–271

    Article  CAS  Google Scholar 

  • Hatch D, Trindade H, Cardenas L, Carneiro J, Hawkins J, Scholefield D, Chadwick D (2005) Laboratory study of the effects of two nitrification inhibitors on greenhouse gas emissions from a slurry-treated arable soil: impact of diurnal temperature cycle. Biol Fertil Soils 4:225–232

    Article  CAS  Google Scholar 

  • Hawkins JMB, Scholefield D (1996) Molybdate-reactive phosphorus losses in surface and drainage waters from permanent grassland. J Environ Qual 25:727–732

    Article  CAS  Google Scholar 

  • Haygarth PM, Jones KC, Harrison AF (1991) Selenium cycling through agricultural grasslands in the UK — budgeting the role of the atmosphere. Sci Total Environ 103:89–111

    Article  CAS  Google Scholar 

  • Haygarth PM, Chapman PJ, Jarvis SC, Smith RV (1998) Phosphorus budgets for two contrasting grassland farming systems in the UK. Soil Use Manage 14:160–167

    Article  Google Scholar 

  • Haynes R.J, Williams PH (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron 49:119–199

    CAS  Google Scholar 

  • Hobbs PJ, Webb J, Mottram TT, Grant B, Misselbrook TH (2004) Emissions of volatile organic compounds originating from UK livestock agriculture. J Sci Food Agric 84:1414–1420

    Article  CAS  Google Scholar 

  • Hopkins A, Adamson AH, Bowling PJ (1994) Response of permanent and reseeded grassland to fertilizer nitrogen. 2. Effects on concentrations of Ca, Mg, K, Na, S, P, Mn, Zn, Cu, Co and Mo in herbage at a range of sites. Grass Forage Sci 49:9–20

    Article  CAS  Google Scholar 

  • Huff WE, Moore PA, Waldroup PW, Waldroup AL, Balog JM, Huff GR, Rath NC, Daniel TC, Raboy V (1998) Effect of dietary phytase and high available phosphorus corn on broiler chicken performance. Poult Sci 77:1899–1904

    PubMed  CAS  Google Scholar 

  • Jarvis SC (1999) Accounting for nutrients in grassland: challenges and needs. In: Corrall AJ (ed) Accounting for nutrients: a challenge for grassland farmers in the 21st century. Br Grass Soc Occas Symp 33:3–12

    Google Scholar 

  • Jarvis SC, Ledgard SF (2002) Ammonia emissions from intensive dairying: a comparison of contrasting systems in the United Kingdom and New Zealand. Agric Ecosyst Environ 92:83–92

    Article  CAS  Google Scholar 

  • Jarvis SC, Hatch DJ, Lockyer DR (1989) Ammonia fluxes from grazed grassland: annual losses from cattle production systems and their relation to nitrogen inputs. J Agric Sci 113:99–108

    CAS  Google Scholar 

  • Jarvis SC, Barraclough D, Williams J, Rook AJ (1991) Patterns of denitrification loss from grazed grassland — effects of N fertilizer inputs at different sites. Plant Soil 131:77–88

    CAS  Google Scholar 

  • Jarvis SC, Wilkins RJ, Pain BF (1996) Opportunities for reducing the environmental impact of dairy farm managements: a systems approach. Grass Forage Sci 51:21–31

    Article  Google Scholar 

  • Jewkes EC, Scholefield D, Turner MM, Brown L (2004) Indicators for environmental and economic sustainability on UK dairy farms. In: Hatch DJ, Chadwick D, Jarvis SC, Roker JA (eds), Controlling N flows and losses. In: Hatch DJ, Chadwick D, Jarvis SC, Roker JA (eds) Proceedings of the 12th Nitrogen Workshop. Wageningen, pp 510–512

    Google Scholar 

  • Johnes PJ (1996) Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. J Hydrol 183:323–349

    Article  CAS  Google Scholar 

  • Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439

    Article  Google Scholar 

  • Kayser M, Isselstein J (2005) Potassium cycling and losses in grassland systems: a review. Grass Forage Sci 60:213–224

    Article  CAS  Google Scholar 

  • Kelliher FM, Reisinger AR, Martin RJ, Harvey MJ, Price SJ, Sherlock RR (2002) Measuring nitrous oxide emission rate from grazed pasture using Fourier-transform infrared spectroscopy in the nocturnal boundary layer. Agric Forest Meteorol 111:29–38

    Article  Google Scholar 

  • Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  PubMed  CAS  Google Scholar 

  • Khan ZI, Hussain A, Ashraf M, Vales EE, Ashraf MY, Ahmad MS (2004) Soil and forage mineral (trace elements) status of a grazing pasture in the semiarid region of Pakistan. Pakistan J Bot 36:851–856

    Google Scholar 

  • King J, Sim EM, Grant SA (1984) Photosynthetic rate and carbon balance of grazed ryegrass pastures. Grass Forage Sci 39:81–92

    Article  Google Scholar 

  • Knowles SO, Grace ND, Knight TW, McNabb WC, Lee J (2004) Adding nutritional value to meat and milk from pasture-fed livestock. N Z Vet J 52:342–351

    PubMed  CAS  Google Scholar 

  • Laws JA, Pain BF, Jarvis SC, Scholefield D (2000) Comparison of grassland management systems for beef cattle using self-contained farmlets: effects of contrasting nitrogen inputs and management strategies on nitrogen budgets, and herbage and animal production. Agric Ecosyst Environ 80:243–254

    Article  Google Scholar 

  • Leach KA, Goulding KWT, Hatch DJ, Conway JS, Allingham K (2004) Nitrogen balances over 7 years on a mixed farm in the Cotswolds. Controlling N flows and losses. In: Hatch DJ, Chadwick D, Jarvis SC, Roker JA (eds) Proceedings of the 12th Nitrogen Workshop. Wageningen, pp 39–46

    Google Scholar 

  • Ledgard SF, Steele KW, Saunders WHM (1982) Effects of cow urine and its major constituents on pasture properties. N Z J Agric Res 25:61–68

    Google Scholar 

  • Ledgard SF, Sprosen MS, Brier GJ, Nemaia EKK, Clark DA (1996) Nitrogen inputs and losses from New Zealand dairy farmlets, as affected by nitrogen fertilizer application: year one. Plant Soil 181:65–69

    Article  CAS  Google Scholar 

  • Li CS, Frolking S, Frolking TA (1992) A model of nitrous-oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity. J Geophys Res Atmos 97:9759–9776

    CAS  Google Scholar 

  • Loiseau P, Soussana JF (1999) Elevated CO2, temperature increase and N supply effects on the accumulation of below-ground carbon in a temperate grassland ecosystem. Plant Soil 212:123–134

    Article  CAS  Google Scholar 

  • Long SP, Hall DO (1987) Ecosystems — nitrogen cycles in perspective. Nature 329:584–585

    Article  Google Scholar 

  • Lord EI, Anthony SG, Goodlass G (2002) Agricultural nitrogen balance and water quality in the UK. Soil Use Manage 18:363–369

    Article  Google Scholar 

  • Lovell RD, Jarvis SC (1996) Effect of cattle dung on soil microbial biomass C and N in a permanent pasture soil. Soil Biol Biochem 28:291–299

    Article  CAS  Google Scholar 

  • Lynch DH, Cohen RDH, Fredeen A, Patterson G, Martin RC (2005) Management of Canadian prairie region grazed grasslands: soil C sequestration, livestock productivity and profitability. Can J Soil Sci 85:183–192

    CAS  Google Scholar 

  • MacDiarmid BN, Watkins BR (1972) Cattle dung patch. Distribution and rate of decay of dung patches and their influence on grazing behaviour. J Br Grass Soc 27:48–54

    Article  Google Scholar 

  • MacDuff JH, Bakken AK, Dhanoa MS (1997) An analysis of the physiological basis of commonality between diurnal patterns of NH +4 , NO 3 and K+ uptake by Phleum pratense and Festuca pratensis. J Exp Bot 48:1691–1701

    CAS  Google Scholar 

  • Mackay AD, Gregg PEH, Syers JK (1980) A preliminary evaluation of Chatham Rise phosphorite as a direct-use phosphatic fertilizer. N Z J Agric Res 23:441–449

    CAS  Google Scholar 

  • MAFF (2000) Fertiliser recommendations for agricultural and horticultural crops (RB209). Stationery Office, London

    Google Scholar 

  • Manlay RJ, Ickowicz A, Masse D, Feller C, Richard D (2004) Spatial carbon, nitrogen and phosphorus budget in a village of the West African savanna — II. Element flows and functioning of a mixed-farming system. Agric Syst 79:83–107

    Article  Google Scholar 

  • McDowell R, Sharpley A, Brookes P, Poulton P (2001) Relationship between soil test phosphorus and phosphorus release to solution. Soil Sci 166:137–149

    Article  CAS  Google Scholar 

  • McDowell R, Monaghan RM, Wheeler D (2005) Modelling phosphorus losses from pastoral farming systems in New Zealand. N Z J Agric Res 48:131–141

    Google Scholar 

  • McNeill AM, Eriksen J, Bergstrom L, Smith KA, Marstorp H, Kirchmann H, Nilsson I (2005) Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems. Soil Use Manage 21:82–93

    Google Scholar 

  • McTiernan KB, Jarvis SC, Scholefield D, Hayes MHB (2001) Dissolved organic carbon losses from grazed grasslands. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. Proceedings of the 27th Meeting of the British Society of Soil Science, Edinburgh, 15–17 September 1999, CAB International, Wallingford, pp 264–273

    Google Scholar 

  • Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19

    Article  CAS  Google Scholar 

  • Monteny G-J, Bannink A, Chadwick DR (2006) Greenhouse gas abatement stategies for animal husbandry. Agric Ecosyst Environ 112:163–170

    Article  CAS  Google Scholar 

  • Moorby JM (2003) A project to summarise what farmers can do now to reduce N excretion at little or no cost. DEFRA Final Report, project WA0322

    Google Scholar 

  • Morrison J, Jackson MV, Sparrow PE (1980) The response of perennial ryegrass to fertilizer nitrogen in response to climate and soil. Report no. 27, Grassland Research Institute, Hurley, UK

    Google Scholar 

  • Murphy MD, Quirke WA (1997) The effect of sulphur/nitrogen/selenium interactions on herbage yield and quality. Irish J Agric Food Res 36:31–38

    CAS  Google Scholar 

  • Nguyen ML, Goh KM (1993) Factors affecting plant sulphur requirements in New Zealand pastoral and arable systems. In: Proceedings of the 17th International Grass Congress, New Zealand, pp 1433–1436

    Google Scholar 

  • Nowakowski TZ, Byers M (1972) Effects of nitrogen and potassium fertilizers on contents on carbohydrates and free amino-acids in Italian ryegrass. 2. Changes in composition of non-protein nitrogen fraction and distribution of individual amino-acids. J Sci Food Agric 25:271–283

    Article  Google Scholar 

  • Oborn I, Edwards AC, Witter E, Oenema O, Ivarsson K, Withers PJA, Nilsson SI, Stinzing AR (2003) Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. Eur J Agron 20:211–225

    Article  CAS  Google Scholar 

  • Oborn I, Andrist-Rangel Y, Askekaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural systems. Soil Use Manage 21:102–112

    Google Scholar 

  • Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20:3–16

    Article  Google Scholar 

  • O’Leary T, McCormack A, Hutchinson G, Campbell D, Scarpa R, Riordan B (2004) Putting a value on the farm landscape. Teagasc website, http://www.teagasc.ie/publications/2004/20041103/paper02.htm

    Google Scholar 

  • Ozturk HS, Ok SS, Arcak S (2004) Leaching of boron through sewage sludge amended soil: the role of clinoptilolite. Bioresour Technol 95:11–14

    Article  PubMed  CAS  Google Scholar 

  • Pain BF, van der Weerden TJ, Chambers BJ, Phillips VR, SC Jarvis (1998) A new inventory for ammonia emissions from UK agriculture. Atmos Environ 32:309–313

    Article  CAS  Google Scholar 

  • Pardo MT, Guadalix ME (1990) Phosphate sorption in allophanic soils and release of sulphate, silicate and hydroxyl. J Soil Sci 4:607–612

    Article  Google Scholar 

  • Parsons AJ, Leafe EL, Collett B, Stiles W (1983) The physiology of grass production under grazing.1. Characteristics of leaf and canopy photosynthesis of continuously-grazed swards. J Appl Ecol 20:117–126

    Article  Google Scholar 

  • Parsons AJ, Orr RJ, Penning PD, Lockyer DR, Ryden JC (1991) Uptake, cycling and fate of nitrogen in grass clover swards continuously grazed by sheep. J Agric Sci 116:47–61

    CAS  Google Scholar 

  • Petersen RG, Lucas HL, Woodhouse WW (1956) The distribution of excreta by freely grazing cattle and its effect on pasture fertility: I Excretal distribution. Agron J 48:440–444

    Article  Google Scholar 

  • Powell B, Martens M (2005) A review of acid sulphate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Marine Pollut Bull 51:149–164

    Article  CAS  Google Scholar 

  • Pretty JN, Brett C, Gee D, Hine RE, Mason CF, Morison JIL, Raven H, Rayment MD, van der Bijl G (2000) An assessment of the total external costs of UK agriculture. Agric Syst 65:113–136

    Article  Google Scholar 

  • Pretty JN, Ball AS, Lang T, Morison JIL (2005) Farm costs and food miles: an assessment of the full cost of the UK weekly food basket. Food Policy 30:1–19

    Article  Google Scholar 

  • Rees RM, Bingham IJ, Baddeley JA, Watson CA (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128:130–154

    Article  CAS  Google Scholar 

  • Richards IR, Wolton KM (1976) The spatial distribution of excreta under extensive cattle grazing. J Br Grass Soc 31:89–92

    Article  Google Scholar 

  • Robinson DL (1996) Fertilization and nutrient utilization in harvested forage systems — southernforage crops. In: Joost RE, Roberts CA (eds) Nutrient cycling in forage systems, Proceedings of a symposium held March 7–8 1996, Columbia Missouri, USA. Potash and Phosphate Institute/Foundation for Agronomic Research, pp 65–92

    Google Scholar 

  • Rotz CA, Taube F, Russelle MP, Oenema J, Sanderson MA, Wachendorf M (2005) Whole-farm perspectives of nutrient flows in grassland agriculture. Crop Sci 45:2139–2159

    Article  CAS  Google Scholar 

  • Rufino MC, Rowe EC, Delve RJ, Giller KE (2006) Nitrogen cycling efficiencies through resource-poor African crop-livestock systems. Agric Ecosyst Environ 112:261–282

    Article  Google Scholar 

  • Rutter SM, Orr RJ, Yarrow NH, Champion RA (2004) Dietary preference of dairy cows grazing ryegrass and white clover. J Dairy Sci 87:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Ryden JC (1986) Gaseous losses of nitrogen from grassland. In: van der Meer HG, Ryden JC, Ennik GC (eds) Nitrogen fluxes in intensive grassland systems. Nijhoff, Leiden, pp 59–73

    Google Scholar 

  • Sacco D, Bassanino M, Grignani C (2003) Developing a regional agronomic information system for estimating nutrient balances at a larger scale. Eur J Agron 20:199–210

    Article  CAS  Google Scholar 

  • Safe Sludge Matrix (2001) Guidelines for the application of sewage sludge to agricultural land. ADAS website, http://www.adas.co.uk/media_files/Publications/SSM.pdf

    Google Scholar 

  • Salo T, Turtola E (2006) Nitrogen balance as an indicator of nitrogen leaching in Finland. Agric Ecosyst Environ 113:98–107

    Article  CAS  Google Scholar 

  • Scheringer J (2003) Nitrogen on dairy farms: balances and efficiency. PhD thesis, University of Gottingen. Excelsior, Germany

    Google Scholar 

  • Scholefield D (2003) Some impacts of crop quality on environment and biodiversity. In: Proceedings of Aspects of Applied Biology: Crop Quality: its role in sustainable livestock production. Association of Applied Biologists Conference, 15–16 December 2003, Manchester, vol 70, pp 53–61

    Google Scholar 

  • Scholefield D (2004) Reconciling productivity with environmental considerations In: Hatch DJ, Chadwick D, Jarvis SC, Roker JA (eds) Controlling N flows and losses Proceedings of the 12th Nitrogen Workshop. Wageningen, pp 469–483

    Google Scholar 

  • Scholefield D, Oenema O (1999) Nutrient cycling within temperate agricultural grasslands. Invited plenary paper. In: Buchanan-Smith JG, Bailey LD, McCaughey P (eds) Grasslands 2000, Proceedings of the XVIII International Grassland Congress, Winnipeg, Manitoba, Saskatoon, Saskatchewan, Canada (vol 1)

    Google Scholar 

  • Scholefield D, Smith JU (1996) Nitrogen flows in ley-arable systems. In: Younie D (ed) Legumes in sustainable farming systems. Br Grass Soc Occas Symp 30:96–104

    Google Scholar 

  • Scholefield D, Garwood EA, Titchen NM (1988) The potential of management practices for reducing losses of nitrogen from grazed pastures. In: Jenkinson DS, Smith KA (eds) Nitrogen efficiency in agricultural soils. Elsevier, London, pp 220–231

    Google Scholar 

  • Scholefield D, Lockyer DR, Whitehead DC, Tyson KC (1991) A model to predict transformations and losses of nitrogen in UK pastures grazed by beef-cattle. Plant Soil 132:165–177

    CAS  Google Scholar 

  • Scholefield D, Tyson KC, Garwood EA, Armstrong AC, Hawkins J, Stone AC (1993) Nitrate leaching from grazed grassland lysimeters — effects of fertilizer input, field drainage, age of sward and patterns of weather. J Soil Sci 44:601–613

    Article  Google Scholar 

  • Scholefield D, Le Goff T, Braven J, Ebdon L, Long T, Butler M (2005a) Concerted diurnal patterns in riverine nutrient concentrations and physical conditions. Sci Total Environ 344:201–210

    PubMed  CAS  Google Scholar 

  • Scholefield D, Jarvis SC, Brown L, del Prado A, Hopkins A, Cardenas LM (2005b) Feedback and feed-forward interactions between climate change and grassland-based agriculture. Avoiding dangerous climate change. Scientific symposium on stabilisation of greenhouse gases. 1–3 February 2005, Meteorological Office, Exeter, UK

    Google Scholar 

  • Schröder JJ, Aarts HFM, ten Berge HFM, van Keulen H, Neeteson JJ (2003) An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. Eur J Agron 20:33–44

    Article  CAS  Google Scholar 

  • Sharpley AN, Syers JK (1976) Phosphorus transport in surface run-off as influenced by fertilizer and grazing cattle. N Z J Agric Sci 19:277–282

    CAS  Google Scholar 

  • Sheldrick W, Syers JK, Lingard J (2003) Contribution of livestock excreta to nutrient balances. Nutr Cycl Agroecosyst 66:119–131

    Article  Google Scholar 

  • Sims JT, Bergstrom L, Bowman BT, Oenema O (2005) Nutrient management for intensive animal agriculture: policies and practices for sustainability. Soil Use Manage 21:141–151

    Google Scholar 

  • Sivertsen T, Plassen C (2004) Hepatic cobalt and copper levels in lambs in Norway. Acta Vet Scand 45:69–77

    Article  PubMed  CAS  Google Scholar 

  • Skiba U, Fowler D, Smith K (1994) Emissions of NO and N2O from soils. Environ Monitor Assess 3:153–158

    Article  Google Scholar 

  • Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20:229–236

    Article  CAS  Google Scholar 

  • Smith P, Goulding KW, Smith KA, Powlson DS, Smith JU, Falloon P, Coleman K (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosys 60:237–252

    Article  Google Scholar 

  • Smith RV, Lennox SD, Jordan C, Foy RH, McHale E (1995) Increase in soluble phosphorus transported in drainflow from a grassland catchment in response to soil phosphorus accumulation. Soil Use Manage 1:204–209

    Article  Google Scholar 

  • Sommerfeldt TG, Chang C (1985) Changes in soil properties under annual applications of feedlot manure and different tillage practices. Soil Sci Soc Am J 49:983–987

    Article  Google Scholar 

  • Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage 20:219–230

    Article  Google Scholar 

  • Steenvoorden JHAM, Fonck H, Oosterom HP (1986) Loses of nitrogen from intensive grassland systems by leaching and surface runoff. In: van der Meer HG, Ryden JC, Ennik GC (eds) Nitrogen fluxes in intensive grassland systems. Nijhoff, Leiden, pp 85–97

    Google Scholar 

  • Stephens PR, Hewitt AE, Sparling GP, Gibb RG, Shepherd TG (2003) Assessing sustainability of land management using a risk identification model. Pedosphere 13:41–48

    Google Scholar 

  • Tallowin JRB, Brookman SKE (1988) Herbage potassium levels in a permanent pasture under grazing. Grass Forage Sci 43:209–212

    Article  Google Scholar 

  • Thornley JHM, Verbene EIJ (1989) A model of nitrogen flows in grassland. Plant Cell Environ 12:863–886

    Article  Google Scholar 

  • Till AR, May PF (1971) Nutrient cycling in grazed pastures. 4. Fate of sulphur-35 following its application to a small area in a grazed pasture. Aust J Agric Res 22:391–400

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1980) The management of ryegrass to stabilize aggregates of a red-brown earth. Aust J Soil Res 18:415–422

    Article  Google Scholar 

  • Trindade H, Coutinho J, VanBeusichem ML, Scholefield D, Moreira N (1997) Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements. Plant Soil 195:247–256

    Article  CAS  Google Scholar 

  • Tyson KC, Roberts DH, Clement CR, Garwood EA (1990) Comparison of crop yields and soil conditions during 30 years under annual tillage or grazed pasture. J Agric Sci 115:29–40

    Article  Google Scholar 

  • Underhay VHS, Dickinson CH (1978) Water, mineral and energy fluctuations in decomposing cattle dung pats. J Br Grass Soc 33:189–196

    Article  CAS  Google Scholar 

  • Van der Meer HG, van der Putten AHJ (1995) Reduction of nutrient emissions from ruminant livestock farms. In: Pollott GE (ed) Grassland into the 21st century: challenges and opportunities, Br Grass Soc Occas Symp 29:118–133

    Google Scholar 

  • Van de Ven GWJ (1992) GRASMOD. A grassland management model to calculate nitrogen losses from grassland. Report 158, CABO-DLO, Wageningen

    Google Scholar 

  • Vellinga TV, Andre G (1999) Sixty years of Dutch nitrogen fertiliser experiments, an overview of the effects of soil type, fertiliser input, management and of developments in time. Neth J Agric Sci 47:215–241

    Google Scholar 

  • Watson CA, Bengtsson H, Ebbesvik M, Loes AK, Myrbeck A, Salomon E, Schröder J, Stockdale EA (2002) A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manage 18:264–273

    Article  Google Scholar 

  • Watson CA, Oborn I, Eriksen J, Edwards AC (2005) Perspectives on nutrient management in mixed farming systems. Soil Use Manage 21:132–140

    Google Scholar 

  • Webb J, Menzi H, Pain BF, Misselbrook TH, Dammgen U, Hendriks H, Dohler H (2005) Managing ammonia emissions from livestock production in Europe. Environ Pollut 135:399–406

    Article  PubMed  CAS  Google Scholar 

  • Weeda WC (1967) The effect of cattle dung patches on pasture growth, botanical composition, and pasture utilization. N Z J Agric Res 10:150–159

    Google Scholar 

  • Wheeler DM, Ledgard SF, de Klein CAM, Monaghan RM, Carey PL, McDowell RW, Johns KL (2003) OVERSEER® nutrient budgets — moving towards on-farm resource accounting. Proc N Z Grass Assoc 65:191–194

    Google Scholar 

  • White DJ, Wilkinson JM, Wilkins RJ (1983) Support energy use in animal production from grassland. Br Grass Soc Occas Symp 14

    Google Scholar 

  • Whitehead DC (1986) Sources and transformations of organic nitrogen in intensively managed grassland soils. In: van der Meer HG, Ryden JC, Ennik GC (eds) Nitrogen fluxes in intensive grassland systems. Nijhoff, Leiden, pp 47–58

    Google Scholar 

  • Whitehead DC (1995) Grassland nitrogen. CAB International, Wallingford, UK

    Google Scholar 

  • Williams PH, Haynes RJ (1992) Balance-sheet of phosphorus, sulphur and potassium in a long-term grazed pasture supplied with superphosphate. Fert Res 31:51–60

    Article  CAS  Google Scholar 

  • Williams PH, Haynes RJ (1993) Forms of sulphur in sheep excreta and their fate after application on to pasture soil. J Sci Food Agric 62:323–329

    Article  CAS  Google Scholar 

  • Wilsey BJ, Parent G, Roulet NT, Moore TR, Potvin C (2002) Tropical pasture carbon cycling: relationships between C source/sink strength, above-ground biomass and grazing. Ecol Lett 5:367–376

    Article  Google Scholar 

  • Woli KP, Nagumo T, Hatano R (2002) Evaluating impact of land use and N budgets on stream water quality in Hokkaido, Japan. Nutr Cycl Agroecosyst 63:175–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scholefield, D., Jewkes, E., Bol, R. (2007). Nutrient Cycling Budgets in Managed Pastures. In: Marschner, P., Rengel, Z. (eds) Nutrient Cycling in Terrestrial Ecosystems. Soil Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_8

Download citation

Publish with us

Policies and ethics