Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 10))

Abstract

In addition to their role as organs for anchorage in soil, soil exploitation, and uptake of water and nutrients, plant roots can modify the physico-chemical conditions in the surrounding soil via alterations of root activity. The soil volume that is directly or indirectly influenced by the activity of plant roots is called the rhizosphere (Hinsinger 1998). As early as the beginning of the last century, the German phytopathologist Lorenz Hiltner (1904) recognised that the rhizosphere, as the interface between the soil matrix, plant roots and soil microorganisms, plays a critical role in nutrient cycling in ecosystems. Root-induced physico-chemical changes in the rhizosphere are major determinants of the plant availability of nutrients and toxic elements in soils. Organic compounds released from plant roots as rhizodeposits can have a direct impact on the solubility of mineral elements or can indirectly influence turnover and availability of nutrients by interaction with soil micro-organisms. Thus, rhizodeposition is a key factor determining fluxes and pool sizes of mineral nutrients in ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MA, Pate JS (1992) Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.). Plant Soil 145:107–113

    Google Scholar 

  • Ae N, Arihara J, Okada K, Yoshihara T, Otani T, Johansen C (1993) The role of piscidic acid secreted by pigeonpea roots grown in an Alfisol with low P fertility. In: Randall PJ, Delhaize E, Richards PA, Munns R (eds) Genetic aspects of plant mineral nutrition, Kluwer, Dordrecht, pp 279–288

    Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:750–751

    Google Scholar 

  • Alexander DB, Zuberer DA (1989) 15N fixation by bacteria associated with maize roots at a low partial O2 pressure. Appl Environ Microbiol 55:1748–1753

    PubMed  CAS  Google Scholar 

  • Amann C, Amberger A (1988) Verringerung der Phosphatsorption durch Zusatz organischer Verbindungen zu Böden in Abhängigkeit vom pH Wert. Z Pflanzenernaehr Bodenkd 151:41–46

    CAS  Google Scholar 

  • Awad F, Römheld V (2000) Mobilization of heavy metals from contaminated calcareous soils by plant-borne chelators and its uptake by wheat plants. J Plant Nutr 23:1847–1857

    CAS  Google Scholar 

  • Bar-Yosef B (1991) Root excretions and their environmental effects. Influence on availability of phosphorus. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. Dekker, New York, pp 529–557

    Google Scholar 

  • Basu U, Good AG, Aqung T, Slaski JJ, Basu A, Briggs KG, Taylor GJ (1999) A 43-kDa, root exudate polypeptide co-segregates with aluminium resistance in Triticum aestivum. Physiol Plant 106:53–61

    CAS  Google Scholar 

  • Battey NH, Blackbourn HD (1993) The control of exocytosis in plant cells. New Phytol 125:307–338

    CAS  Google Scholar 

  • Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11:643–659

    PubMed  CAS  Google Scholar 

  • Beißner L (1997) Mobilisierung von Phosphor aus organischen und anorganischen P-Verbindungen durch Zuckerrübenwurzeln. PhD thesis. Georg-August University, Göttingen. Cuvillier, Göttingen

    Google Scholar 

  • Boeuf-Tremblay V, Plantureux S, Guckert A (1995) Influence of mechanical impedance on root exudation of maize seedlings at two developmental stages. Plant Soil 172:279–287

    CAS  Google Scholar 

  • Boddey RM, Döbereiner J (1988) Nitrogen fixation associated with grasses and cereals: recent results and perspectives for future research. Plant Soil 108:53–65

    Google Scholar 

  • Bonkowski B (2004) Protozoa and plant growth: the microbial loop revisited. New Phytol 162:617–631

    Google Scholar 

  • Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31:393–395

    Google Scholar 

  • Cakmak I, Marschner H (1988) Increase in membrane permeability and exudation in roots of zinc-deficient plants. J Plant Physiol 132:356–36

    CAS  Google Scholar 

  • Cakmak I, Erenoglu B, Gülüt KY, Derici R, Römheld V (1998) Light-mediated release of phytosiderophores in wheat and barley under iron or zinc deficiency. Plant Soil 202:309–315

    CAS  Google Scholar 

  • Casarin V, Plassard C, Souche G, Arvieu J-C (2003) Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23:461–469

    CAS  Google Scholar 

  • Chapin FS III, Moilanen L, and Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153

    CAS  Google Scholar 

  • Cooley-Smith JR, Cooke RC (1971) Survival and germination of fungal sclerotia. Annu Rev Phytopathol 9:65–92

    Google Scholar 

  • Costa G, Michaut JC, Guckert A (1997) Amino acids exuded from axenic roots of lettuce and white lupin seedlings exposed to different cadmium concentrations. J Plant Nutr 20:883–900

    CAS  Google Scholar 

  • Crowley D (2000) Function of siderophores in the plant rhizosphere. In: Pinton R, Varanini Z, Nannipieri Z (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Dekker, New York, pp 223–261

    Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    PubMed  CAS  Google Scholar 

  • Darrah PR (1996) Rhizodeposition under ambient and elevated CO2 levels. Plant Soil 187:265–275

    CAS  Google Scholar 

  • De la Fuente JM, RamÍrez-RodrÍguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    PubMed  Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059–2067

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 19:1549–1554

    Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 11:285–292

    Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200

    Google Scholar 

  • Dinkelaker B, Hengeler C, Neumann G, Eltrop L, Marschner H (1997) Root exudates and mobilization of nutrients. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees — contributions to modern tree physiology. Backhuys, Leiden, pp 441–452

    Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–493

    CAS  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    CAS  Google Scholar 

  • Erenoglu B, Cakmak I, Marschner H, Römheld V, Eker S, Daghan H, Kalayci M, Ekiz H (1996) Phytosiderophore release does not relate well with Zn efficiency in different bread wheat genotypes. J Plant Nutr 19:1569–1580

    CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    PubMed  CAS  Google Scholar 

  • Fate G, Chang M, Lynn DG (1990) Control of germination in Striga asiatica: chemistry of spatial definition. Plant Physiol 93:201–207

    PubMed  CAS  Google Scholar 

  • Fischer WN, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K, Frommer WB (1998) Amino acid transport in plants. Trends Plant Sci 3:188–195

    Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) Radical biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    PubMed  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    PubMed  CAS  Google Scholar 

  • Gagnon H, Seguin J, Bleichert E, Tahara S, Ibrahim PK (1992) Biosynthesis of white lupin isoflavonoids from [U-14C]l-phenylalanine and their release into the culture medium. Plant Physiol 100:76–79

    PubMed  CAS  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism, by which phosphorus movement in the soil-root interface is enhanced. Plant Soil 70:107–114

    CAS  Google Scholar 

  • Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L.: effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere samples of an Oxisol and a Luvisol. Z Planzenernaehr Bodenkd 157:289–294

    CAS  Google Scholar 

  • Gerke J, Beißner L, Römer W (2000) The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J Plant Nutr Soil Sci 163:207–212

    CAS  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase in phosphorus-deficient white lupin roots. Plant Cell Environ 21:801–810

    Google Scholar 

  • Godo GH, Reisenauer HM. (1980) Plant effects on soil manganese availability. Soil Sci Soc Am J 44:993–995

    CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Google Scholar 

  • Gries D, Klatt S, Runge M (1998) Copper-deficiency-induced phytosiderophore release in the calcicole grass Hordelymus europaeus. New Phytol 140:95–101

    CAS  Google Scholar 

  • Groleau-Renaud V, Plantureux SA, Guckert A (1998) Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions. Plant Soil 201:231–239

    CAS  Google Scholar 

  • Gunawardena U, Rodriguez M, Straney D, Romeo JT, Van Etten HD, Hawes MC (2005) Tissuespecific localization of pea root infection by Nectria haematococca. Mechanisms and consequences. Plant Physiol 137:1363–1374

    PubMed  CAS  Google Scholar 

  • Hajiboland R (2000) Zinc efficiency in rice (Oryza sativa L.) plants. PhD thesis, Hohenheim University, Stuttgart. Grauer, Stuttgart

    Google Scholar 

  • Hajiboland R, Yang XE, Römheld V (2003) Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice wheat and rye. Plant Soil 250:349–357

    CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Thao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133

    PubMed  CAS  Google Scholar 

  • Heim A, Luster J, Brunner I, Frey B, Frossard E (1999) Effects of aluminium treatment on Norway spruce roots: aluminium binding forms, element distribution, and release of organic substances. Plant Soil 216:103–116

    CAS  Google Scholar 

  • Hens M, Turner BL, Hocking PJ (2003) Chemical nature of soil organic phosphorus mobilized by organic anions. In: Proceedings of the 2nd International Symposium on Phosphorus Dynamics in the Soil-Plant continuum. Perth, Western Australia. Uniprint, University of Western Australia, pp 16–17

    Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78

    Google Scholar 

  • Hinsinger P (1998) How do plants acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265

    CAS  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Nitrogen capture by plants in N-rich organic patches of contrasting size and strength. J Exp Bot 50:1243–1252

    CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rockphosphate by rape. II. Local exudation of organic acids as a response to P-starvation. Plant Soil 113:161–165

    CAS  Google Scholar 

  • Hooker JE, Hendrick R, Atkinson D (2000) The measurement and analysis of fine root longevity In: Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van de Geijn SC (eds) Root methods. A handbook. Springer, Heidelberg Berlin New York, pp 403–459

    Google Scholar 

  • Hopkins BG, Whitney DA, Lamond RE, Jolley VD (1998) Phytosiderophore release by sorghum wheat, and corn under zinc deficiency. J Plant Nutr 21:2623–2637

    CAS  Google Scholar 

  • Horst WJ, Wagner A, Marschner H (1982) Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiol 105:435–444

    CAS  Google Scholar 

  • Huang B, North G, Nobel PS (1993) Soil sheaths, photosynthate distribution to roots and rhizosphere water relations for Opuntia ficus-indica. Int J Plant Sci 154:425–431

    Google Scholar 

  • Hübel F, Beck E (1993) In-situ determination of the P relations around the primary root of maize with respect to inorganic and phytate-P. Plant Soil 157:1–9

    Google Scholar 

  • Janzen HH (1990) Deposition of nitrogen into the rhizosphere of wheat roots. Soil Biol Biochem 21:1155–1160

    Google Scholar 

  • Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus L. Plant Physiol 104:657–665

    PubMed  CAS  Google Scholar 

  • Johnson JF, Allan DL, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorusdeficient Lupinus albus — Contribution to organic acid exudation by proteoid roots. Plant Physiol 112:19–30

    PubMed  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere — a critical review. Plant Soil 205:25–44

    CAS  Google Scholar 

  • Jones DL, Darrah PR (1993) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere I. Experimental and model evidence for simultaneous exudation and re-sorption of soluble C compounds. Plant Soil 153:47–59

    CAS  Google Scholar 

  • Jones DL, Edwards AC, Donachie K, Darrah PR (1994) Role of proteinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere. Plant Soil 158:183–192

    CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behaviour in soils: misconceptions and knowledge gaps. Plant Soil 248:31–41

    CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  Google Scholar 

  • Jones DL, Healey JR, Willet VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants — an important N uptake pathway? Soil Biol Biochem 37:413–423

    CAS  Google Scholar 

  • Jongmans AG, Van Breemen N, Lindström US, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud BA, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    CAS  Google Scholar 

  • Kania A, Neumann G, Cesco S, Pinton R, Römheld V (2001) Use of plasma membrane vesicles for examination of phosphorus deficiency-induced root excretion of citrate in cluster roots of white lupin (Lupinus albus L.). In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs H-W, Römheld V, Sattelmacher B, Schmidthalter U, Schubert S, von Wirén N, Wittenmayer L (eds), Plant nutrition — food security and sustainability of agro-ecosystems. Kluwer, Dortrecht, pp 546–547

    Google Scholar 

  • Kania A, Langlade N, Martinoia E, Neumann G (2003) Phosphorus deficiency-induced modifications in citrate catabolism and in cytosolic pH as related to citrate exudation in cluster roots of white lupin. Plant Soil 248:117–127

    CAS  Google Scholar 

  • Katan J (2002) Interactions of spil-borne pathogens with roots and aboveground plant organs. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. Dekker, New York, pp 949–959

    Google Scholar 

  • Kawai S, Tagaki S, Sato Y (1988) Mugineic acid-family phytosiderophores in root secretions of barley, corn and sorghum varieties. J Plant Nutr 11:633–642

    CAS  Google Scholar 

  • Khalil K, Hagagg L, Awad F (2000) Improved Fe and Zn acquisition by Guava seedlings grown in calcareous soils intercropped with graminaceous species. J Plant Nutr 23:2071–2080

    Google Scholar 

  • Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44:901–908

    PubMed  CAS  Google Scholar 

  • Kissel M (1987) Eisenmangel-induzierte Abgabe von Phytosiderophoren aus Gerstenwurzeln als effizienter Mechanismus zur Eisenmobilisierung. PhD Thesis, Hohenheim University, Stuttgart, Germany

    Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance of plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance in maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminium? Plant Physiol 122:945–956

    PubMed  CAS  Google Scholar 

  • Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between aluminium-sensitive and an aluminium-resistant cultivar. Plant Physiol 126:397–410

    PubMed  CAS  Google Scholar 

  • Koltai H, Sharon E, Spiegel Y (2002) Root-nematode interactions: recognition and pathogenicity. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. Dekker, New York, pp 933–947

    Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    CAS  Google Scholar 

  • Kuchenbuch R, Jungk A (1984) Wirkung der Kaliumdüngung auf die Kaliumverfügbarkeit in der Rhizosphäre von Raps. Z Pflanzenernähr Bodenkd 147:435–448

    CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input into the soil. J Plant Nutr Soil Sci 163:421–431

    CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Lambers H, Atkin OK, Millenaar FF (2002) Respiratory patterns in roots in relation to their functioning. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. Dekker, New York, pp 521–552

    Google Scholar 

  • Lee JA (1998) The calcicole-calcifuge problem revisited. Adv Bot Res 29:1–30

    Google Scholar 

  • Lefebvre DD, Duff SMG, Fife CA, Julien-Inalsingh C, Plaxton WC (1990) Response to phosphate deprivation in Brassica nigra suspension cells. Plant Physiol 93:504–511

    PubMed  CAS  Google Scholar 

  • Li M, Osaki M, Rao, IM, Tadano T (1997) Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169

    Google Scholar 

  • Li XF, Ma JF, Matsumoto H (2000) Pattern of aluminum-induced secretion of organic acids differing between rye and wheat. Plant Physiol 123:1537–1543

    PubMed  CAS  Google Scholar 

  • López-Bucio J, De la Vega OM, Guevara-Garcia A, Herrera-Estrella L (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotechnol 18:450–453

    PubMed  Google Scholar 

  • Lundstrom US, van Breemen N, Bain DC, van Hees PAW, Giesler R, Gustafson JP, Ilvesniemi H, Karltun E, Melkerud PA, Olsson M, Riise G, Wahlberg O, Bergelin A, Bishop K, Finlay R, Jongmans AG, Magnusson T, Mannerkoski H, Nordgren A, Nyberg L, Starr M, Tau Strand L (2000) Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic countries. Geoderma 94:335–353

    CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390

    PubMed  CAS  Google Scholar 

  • Ma JF, Nomoto K (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mugineic acids as phytosiderophores. Physiol Plant 97:609–617

    CAS  Google Scholar 

  • Ma JF, Shinada T, Matsuda T, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270:16549–16554

    PubMed  CAS  Google Scholar 

  • Mandimba G, Heulin T, Bally R, Guckert A, Balandreau J (1986) Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant Soil 90:129–139

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner H (1998) Soil-root interface: biological and biochemical processes. In: Huang PM (ed) Soil chemistry and ecosystem health. Soil Science Society of America, Madison, pp 191–231

    Google Scholar 

  • Marschner H, Kissel M, Römheld V (1987) Localization of phytosiderophore release and of iron uptake along intact barley roots. Physiol Plant 71:157–162

    CAS  Google Scholar 

  • Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246:167–174

    CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet I, Forestier C, Kolukisagolu U, Müller Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters: more than just detoxifiers. Planta 214:345–355

    PubMed  CAS  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    PubMed  CAS  Google Scholar 

  • Meharg AA, Kilham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170:345–349

    CAS  Google Scholar 

  • Nambiar EKS (1976) The uptake of zinc-65 by roots in relation to soil water content and root growth. Aust J Soil Res 14:67–74

    CAS  Google Scholar 

  • Nazoa P, Vidmar JJ, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Zhuo DG, Glass ADM, Tourraine B (2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol 689–703

    Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30:83–94

    PubMed  CAS  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorusdeficient plants. Plant Soil 211:121–130

    CAS  Google Scholar 

  • Neumann G, Römheld V (2000) The release of root exudates as affected by the plant physiological status. In: Pinton R, Varanini Z, Nannipieri Z (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Dekker, New York, pp 41–89

    Google Scholar 

  • Neumann G, Römheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. Dekker, New York, pp 617–649

    Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382

    CAS  Google Scholar 

  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-defi-cient white lupin (Lupinus albus L.) Ann Bot 85:909–919

    CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    CAS  Google Scholar 

  • Nishizawa N, Mori S (1987) The particular vesicles appearing in barley root cells and its relation to mugineic acid secretion. J Plant Nutr 10:1013–1020

    CAS  Google Scholar 

  • Olsen RA, Bennet JH, Blume D, Brown JC (1981) Chemical aspects of the Fe stress response mechanisms in tomatoes. J Plant Nutr 3:905–921

    CAS  Google Scholar 

  • Osbourn A (1996) Saponins and plant defence — a soap story. Trends Plant Sci 1:4–9

    Google Scholar 

  • Otani T, Ae N (1999) Extraction of organic phosphorus in andosols by various methods. Soil Sci Plant Nutr 45:151–161

    CAS  Google Scholar 

  • Otani T, Ae N (2001) Interspecific differences in the role of root exudates in phosphorus acquisition. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition. New perspectives. Springer, Berlin Heidelberg New York, pp 101–119

    Google Scholar 

  • Pandeya SB, Singh AC, Dhar P (1998) Influence of fulvic acid on transport of iron in soils and uptake by paddy seedlings. Plant Soil 198:117–125

    CAS  Google Scholar 

  • Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 49:529–560

    CAS  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.) Planta 196:788–795

    CAS  Google Scholar 

  • Persson J, Nashölm T (2003) Regulation of amino acid uptake in conifers by exogenous and endogenous nitrogen. Planta 215:639–644

    Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    PubMed  CAS  Google Scholar 

  • Pich A, Scholz G, Stephan UW (1994) Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant Soil 165:189–196

    CAS  Google Scholar 

  • Pineros MA, Kochian LV (2001) A patch clamp study on the physiology of aluminium toxicity and aluminium tolerance in Zea mays: identification and characterization of Al3+-induced anion channels. Plant Physiol 125:292–305

    PubMed  CAS  Google Scholar 

  • Pineros MA, Shaff JE, Holly S, Manslank VM, Carvalho A, Kochian LV (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol 137:231–241

    PubMed  CAS  Google Scholar 

  • Pinton R, Cesco S, De Nobili M, Santi S, Varanini Z (1998) Water and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants. Biol Fertil Soil 26:23–27

    CAS  Google Scholar 

  • Poschenrieder C, Tolra RP, Barcelo J (2005) A role for cyclic hydroxamates in aluminium resistance in maize? J Inorg Biochem 99:1830–1836

    PubMed  CAS  Google Scholar 

  • Rao AM, Gianfreda L, Palmiero F, Violante A (1996) Interactions of acid phosphatase with clays, organic molecules and organo-mineral complexes. Soil Sci 161:751–760

    CAS  Google Scholar 

  • Rasmussen JA, Heijl AM, Einhellig FA, Thomas JA (1992) Sorgoleone from root exudates inhibits mitochondrial functions. J Chem Ecol 18:197–207

    CAS  Google Scholar 

  • Ratnayake M, Leonard RT, Menge A (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal infection. New Phytol 81:543–552

    CAS  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K, Zhang X (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–321

    CAS  Google Scholar 

  • Reid CPP (1974) Assimilation, distribution and root exudation of 14C by ponderosa pine seedlings under induced water stress. Plant Physiol 54:44–49

    PubMed  CAS  Google Scholar 

  • Rengel Z (1996) Uptake of aluminium by plant cells. New Phytol 134:389–406

    CAS  Google Scholar 

  • Rengel Z, Graham D (1996) Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. J Exp Bot 47:217–226

    CAS  Google Scholar 

  • Rengel Z, Römheld V (2000) Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency. Plant Soil 221:25–34

    Google Scholar 

  • Rengel Z, Gutteridge R, Hirsch P, Hornby D (1996) Plant genotype, micronutrient fertilization and take-all colonization influence bacterial populations in the rhizosphere of wheat. Plant Soil 183: 269–277

    CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    PubMed  CAS  Google Scholar 

  • Richardson AE, George TS, Hens M, Simpson RJ (2005) Utilization of soil organic phosphorus by higher plants. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Cambridge, MA, pp 165–184

    Google Scholar 

  • Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe 1. Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135:112–120

    PubMed  CAS  Google Scholar 

  • Römer W, Beißner L, Schenk H, Jungk A (1995) Einfluß von Sorte und Phosphordüngung auf den Phosphorgehalt und die Aktivität der sauren Phosphatasen von Weizen und Gerste. Ein Beitrag zur Diagnose der P-Versorgung von Pflanzen. Z Pflanzenernähr Bodenkd 158:3–8

    Google Scholar 

  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234

    Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–134

    Google Scholar 

  • Römheld V (1998) The importance of rhizosphere processes in the mineral nutrition of rainfed lowland rice. In: Ladha JK, Wade LJ, Dobermann A, Reichardt W, Kirk GJD, Piggin C (eds) Rainfed lowland rice: advances in nutrient management research. Proceedings of the International Workshop on Nutrient Research in Rainfed Lowlands. International Rice Research Institute, Manila, The Philippines, pp 261–270.

    Google Scholar 

  • Römheld V, Marschner H (1983) Mechanisms of iron uptake by peanut plants: 1. Reduction, chelate splitting, and release of phenolics. Plant Physiol 71:949–954

    PubMed  Google Scholar 

  • Rogers HH, Runion GB Krupa SV (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189

    PubMed  CAS  Google Scholar 

  • Rovira AD (1959) Root excretions in relation to the rhizosphere effect. IV. Influence of plant species, age of plant, light, temperature and calcium nutrition on exudation. Plant Soil 11:53–64

    CAS  Google Scholar 

  • Russel RS (1977) Plant root systems — their function and interaction with the soil. McGraw-Hill, London

    Google Scholar 

  • Ryan PR, Skerett M, Findlay GP, Delhaize E, Tyerman SD (1997) Aluminum activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci USA 94:6547–6552

    PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995a) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995b) Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust J Plant Physiol 122:531–536

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    PubMed  CAS  Google Scholar 

  • Sacchi GA, Abruzzese A, Lucchini G, Fiorani F, Cocucci S (2000) Efflux and active re-absorption of glucose in roots of cotton plants grown under saline conditions. Plant Soil 220:1–11

    CAS  Google Scholar 

  • Sakaguchi T, Nishizawa NK, Nakanishi H, Yoshimura E, Mori S (1999) The role of potassium in the secretion of mugineic acids family phytosiderophores from iron-deficient barley roots. Plant Soil 215:221–227

    CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Ahn SJ, Ryan PR, Delaize E (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653

    PubMed  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    PubMed  CAS  Google Scholar 

  • Semenov AW, van Bruggen AHC, Zelnev VV (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microbiol Ecol 37:116–128

    CAS  Google Scholar 

  • Shenker M, Fan TWM, Crowley DE (2000) Phytosiderophores influence on cadmium uptake by wheat and barley plants. J Environ Qual 29:2091–2098

    Google Scholar 

  • Skene KR (2000) Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann Bot 85:901–908

    Google Scholar 

  • Smit AL, George E, Groenwold J (2000) Root observation and measurements at (transparent) interfaces with soil. In: Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (eds) Root methods. A handbook. Springer, Berlin Heidelberg New York, pp 235–272

    Google Scholar 

  • Squartini A (2000) Functional ecology of the Rhizobium-legume symbiosis. In: Pinton R, Varanini Z, Nannipieri Z (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Dekker, New York, pp 297–326

    Google Scholar 

  • Steiner HY, Song W, Zhang L, Naider F, Becker JM, G. Stacey G (1994) An Arabidopsis peptide transporter is a member of a novel family of membrane transport proteins. Plant Cell 6:1289–1299

    PubMed  CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil. Wiley, New York

    Google Scholar 

  • Ström L, Olsson T, Tyler G (1994) Differences between calcifuge and acidifuge plants in root exudation of low molecular weight organic acids. Plant Soil 167:239–245

    Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (1999) Principles and applications of soil microbiology. Prentice Hall, New Jersey

    Google Scholar 

  • Tagaki S (1976) Naturally occurring iron-chelating compounds in oat and rice root washing I. Activity measurements and preliminary characterization. Soil Sci Plant Nutr 22:423–433

    Google Scholar 

  • Tagaki S (1984) Mechanism of iron uptake regulation in roots and genetic differences. In: Japanese Society of Soil Science and Plant Nutrition (ed) Agriculture, Soil Science and Plant Nutrition in the Northern Part of Japan. Tokyo, Japan, pp 190–195

    Google Scholar 

  • Tagaki S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phyto-siderophore of graminaceous plants. J Plant Nutr 7:469–477

    Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizaea NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    PubMed  CAS  Google Scholar 

  • Tesche M (1974) Einfluß von Trockenbelastung auf die Ausscheidung von Kohlenhydraten durch die Wurzeln von Picea abies (L.) Karst. und anderen Koniferenjungpflanzen. Flora 163:26–36

    Google Scholar 

  • Tesfamariam T, Römheld V, Neumann G (2005) Phosphorus-deficiency induced root exudation of carboxylates contributes to molybdenum acquisition in the rhizosphere of leguminous plants. In: Hartmann A, Schmid M, Wenzel W, Hinsinger P (eds) Rhizosphere 2004 — a tribute to Lorenz Hiltner. GSF-Report, Munich, Neuherberg, Germany

    Google Scholar 

  • Treeby M, Marschner H, Römheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant Soil 114:217–226

    CAS  Google Scholar 

  • Van Breemen N, Finlay R, Lundström U, Jongmans A, Giesler R, Olsson M (2000) Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49:53–67

    Google Scholar 

  • Vance CP (2002) Root bacteria interactions: symbiotic N2 fixation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. Dekker, New York, pp 839–868

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  • Vancura V (1967) Root exudates of plants. III. Effect of temperature and cold shock on the exudation of various compounds from seeds and seedlings of maize and cucumber. Plant Soil 27:319–328

    CAS  Google Scholar 

  • Vivanco JM, Guimaraes RL, Flores HE (2002) Underground plant metabolism: the biosynthetic potential of plant roots. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. Dekker, New York, pp 1045–1070

    Google Scholar 

  • Von Wirén N, Morel JL, Guckert A, Römheld V, Marschner H (1993) Influence of soil microorganisms on iron acquisition in maize. Soil Biol Biochem 25:371–376

    Google Scholar 

  • Von Wirén N, Römheld V, Morel JL, Shiori T, Marschner H (1995) Competition between microorganisms and roots of barley and sorghum for iron accumulated in the root apoplasm. New Phytol 130:511–521

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    PubMed  CAS  Google Scholar 

  • Walter A, Römheld V, Marschner H, Mori S (1994) Is the release of phytosiderophores in zinc-defi-cient wheat plants a response to impaired iron utilization? Physiol Plant 91:493–500

    Google Scholar 

  • Walter A, Pich A, Scholz G, Marschner H, Römheld V (1995) Effects of iron nutritional status and time of day on concentrations of phytosiderophores and nicotianamine in different root and shoot zones of barley. J Plant Nutr 18:1577–1593

    CAS  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358

    Google Scholar 

  • Wasaki J, Omura M, Ando M, Shinano T, Osaki M, Tadano T (1999) Secreting portion of acid phosphatase in roots of lupin (Lupinus albus L.) and a key signal for the secretion from the roots. Soil Sci Plant Nutr 45:937–945

    CAS  Google Scholar 

  • Wasaki J, Rothe A, Kania A, Neumann G, Römheld V, Shinano T, Osaki M, Kandeler E (2005) Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupin as affected by phosphorus supply and atmospheric carbon dioxide concentration. J Environ Qual 34:2157–2166

    PubMed  CAS  Google Scholar 

  • Watt M, Evans J (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716

    PubMed  CAS  Google Scholar 

  • Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006) White Lupin has developed a complex strategy to limit microbial degradation of the excreted citrate required for phosphate nutrition. Plant Cell Environ 29:919–927

    PubMed  CAS  Google Scholar 

  • Werner D (2000) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri Z (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Dekker, New York, pp 197–222

    Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    PubMed  CAS  Google Scholar 

  • Wouterlood M, Cawthray G, Scanlon T, Lambers H, Veneklaas R (2004) Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development but are not correlated with phosphorus status of soil or plants. New Phytol 162:745–753

    CAS  Google Scholar 

  • Xia J, Saglio PH (1988) Characterization of the hexose transport system in maize root tips. Plant Physiol 88:1015–1020

    PubMed  CAS  Google Scholar 

  • Yan F, Zhu Y, Müller C, Zorb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    PubMed  CAS  Google Scholar 

  • Yang X, Römheld V, Marschner H (1993) Effect of bicarbonate and root zone temperature on the uptake of Zn, Fe, Mn and Cu by different rice cultivars. (Oryza sativa L.) grown in calcareous soil. Plant Soil 155/156:441–445

    Google Scholar 

  • Yang X, Römheld V, Marschner H (1994) Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice varieties (Oryza sativa L.) Plant Soil 164:1–7

    CAS  Google Scholar 

  • Zhang F, Römheld V, Marschner H (1989) Effect of zinc deficiency in wheat on release of zinc and iron mobilizing root exudates. Z Pflanzenernähr Bodenkd 152:205–210

    CAS  Google Scholar 

  • Zhang WH, Ryan PR, Tyerman SD (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125:1459–1472

    PubMed  CAS  Google Scholar 

  • Zhang WH, Ryan PR, Tyerman SD (2004) Citrate-permeable anion channels in the plasma membrane of cluster roots from white lupin. Plant Physiol 136:3771–3783

    PubMed  CAS  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) Continuous secretion of organic acid is related to aluminum resistance in relatively long-term exposure to aluminum stress. Physiol Plant 103:209–214

    CAS  Google Scholar 

  • Zhu Y, Yan F, Zorb C, Schubert S (2005) A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? Plant Cell Physiol 46:892–901

    PubMed  CAS  Google Scholar 

  • Zuo Y, Zhang F, Li X, Cao Y (2000) Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil 220:13–25

    CAS  Google Scholar 

  • Zuo Y, Liu Y, Zhang F, Christie P (2004) A study on the improvement iron nutrition of peanut intercropping with maize on nitrogen fixation at early stages of growth of peanut on a calcareous soil. Soil Sci Plant Nutr 50:1071–1078

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neumann, G. (2007). Root Exudates and Nutrient Cycling. In: Marschner, P., Rengel, Z. (eds) Nutrient Cycling in Terrestrial Ecosystems. Soil Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_5

Download citation

Publish with us

Policies and ethics