Skip to main content

Modelling Nitrogen and Phosphorus Cycling in Agricultural Systems at Field and Regional Scales

  • Chapter
Nutrient Cycling in Terrestrial Ecosystems

Part of the book series: Soil Biology ((SOILBIOL,volume 10))

Abstract

Models evolve together with the evolution of our notion and perception of reality. Models can be narratives, graphical or mathematical descriptions, or computer simulations. More than two millennia ago, Chinese and Greek philosophers already had the notion that the environment was composed of the interacting elements earth, air, water, life and metals, but the complex relationships between these factors could only be understood after the birth of modern chemistry, at the end of the eighteenth century. The chemist Justus von Liebig (1803–1873) played an important role in unravelling how plants acquire nutrients from soil, air and water, but other chemists and microbiologists in the eighteenth and nineteenth centuries also contributed to improving the understanding of nutrient cycling processes (Smil 2001). Since that time, numerous (long-term) field experiments have been carried out to test Liebig’s mineral theory and its modifications. For over a century and a half, dose-response experiments have addressed one or more of the following five basic questions (Van Noordwijk 1999): (1) to what extent do nutrients limit crop yield and quality?; (2) what is the quantity of nutrients supplied by the soil?; (3) what constitutes an effective fertiliser?; (4) how much fertiliser should be applied?; and (5) what are the environmental consequences of fertiliser use?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addiscott TM, Whitmore AP, Powlson DS (1991) Farming, fertilisers and the nitrate problem. CAB International, Wallingford

    Google Scholar 

  • Arnold JG, Williams JR (1995) SWRRB-a watershed scale model for soil and water resources management. In: Singh VJ (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, CO, pp 847–908

    Google Scholar 

  • Beasley DB, Huggins LF, Monke EJ (1980) ANWERS: a model for watershed planning. Trans ASAE 23:938–944

    Google Scholar 

  • Beek J, Frissel MJ (1973) Simulation of nitrogen behavior in soils. Centre for Agricultural Publishing and Documentation, Wageningen

    Google Scholar 

  • Bierkens MFP, Finke PA, De Willigen P (2000) Upscaling and downscaling methods for environmental research. Kluwer, Dordrecht

    Google Scholar 

  • Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling: a review. Hydrol Proc 9:251–290

    Article  Google Scholar 

  • Boers PCM, Finke PA, van Grinsven JJM, Groenendijk P (1995) Definition and feasibility of a model for the calculation of nutrient emission to groundwater and surface water, a co-operation between three institutes (in Dutch). RIZA werkdoment 96.081 X. Lelystad

    Google Scholar 

  • Bouma J, Finke PA, Hoosbeek MR, Breeuwsma A (1998) Soil and water quality at different scales: concepts, challenges, conclusions and recommendations. Nutr Cycl Agroecosyst 50:5–11

    Article  Google Scholar 

  • Burt TP, Heathwaith AL, Trudgill ST (eds) (1993) Nitrate: processes, patterns and management. Wiley, Chichester, UK

    Google Scholar 

  • Clark FE (1981) The nitrogen cycle, viewed with poetic licence. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Processes, ecosystems strategies and management impacts. Ecol Bull 33, Stockholm, pp 13–24

    Google Scholar 

  • DeCoursey DG, Rojas KW, Ahuja LR (1989) Potentials for non-point source groundwater contamination analyzed using RZWQM. Paper No. SW892562, presented at the International American Society of Agricultural Engineers’ Winter Meeting, New Orleans, LA

    Google Scholar 

  • DeCoursey DG, Ahuja LR, Hanson J, Shaffer M, Nash R, Rojas KW, Hebson C, Hodges T, Ma Q, Johnsen KE, Ghidey F (1992) Root zone water quality model, Version 1.0, Technical Documentation. United States Department of Agriculture, Agricultural Research Service, Great Plains Systems Research Unit, Fort Collins, CO

    Google Scholar 

  • De Vries W (1994) Soil response to acid deposition at different regional scales; field and laboratory data, critical loads and model predictions. PhD Thesis Wageningen University, Wageningen, the Netherlands

    Google Scholar 

  • De Vries W, Kros J, Oenema O, Erisman JW (2001a) Assessment of nitrogen production ceilings on a regional scale avoiding adverse environmental impact. Sci World 1(S2):664–672

    Google Scholar 

  • De Vries W, Kros J, Oenema O (2001b) Impacts of structural agricultural changes and farming practices on nitrogen fluxes in the Netherlands. Sci World 1(S2):898–907

    Google Scholar 

  • De Vries W, Kros J, Oenema O, de Klein J (2003) Uncertainties in the fate of nitrogen II: A quantitative assessment of the uncertainties in major nitrogen fluxes in the Netherlands. Nutr Cycl Agroecosyst 66:71–102

    Article  Google Scholar 

  • De Vries W, Kros J, Velthof G, Römkens PFAM, Gies E, Voogd JC (2005) Integrated evaluation of agricultural management on environmental quality with a decision support system. In: Proceedings of the Third International N conference. Nanjing, China, Oct 2004

    Google Scholar 

  • De Willigen P (1991) Nitrogen turn-over in the soil-crop system; comparison of fourteen simulation models. Fertil Res 27:141–149

    Article  Google Scholar 

  • De Willigen P, Neeteson JJ (1985) Comparison of six simulation models for the nitrogen cycle in the soil. Fertil Res 8:157–171

    Article  Google Scholar 

  • De Wit CT (1974) Early theoretical concepts in soil fertility. Neth J Agric Sci 22:319–324

    Google Scholar 

  • Diekkrüger B, Söndgerath D, Kersebaum KC, McVoy CW (1995) Validity of agroecosystem models-a comparison of results of different models applied to the same data set. Ecol Model 81:3–29

    Article  Google Scholar 

  • Djurhuus J, Hansen S, Schelde K, Jacobsen OH (1999) Modelling the mean nitrate leaching from spatial variable fields using effective parameters. Geoderma 87:261–279

    Article  Google Scholar 

  • Dutt GR, Shaffer MJ, Moore WJ (1972) Computer simulation model of dynamic bio-physicochemical processes in soils. Tecn Bulletin 196. Arizona Agricultural Experiment Station, University of Arizona, Tucson

    Google Scholar 

  • Follett RF, Hatfield JL (eds) (2001) Nitrogen in the environment: sources, problems and management. Elsevier, Amsterdam

    Google Scholar 

  • Frolking SE, Mosier AR, Ojima DS, Li C, Parton WJ, Potter CS, Priesack E, Stenger R, Haberbosch C, Dörsch P, Flessa H, Smith KA (1998) Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutr Cycl Agroecosyst 52:77–105

    Article  CAS  Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus in the global environment. Transfers, cycles and management. Wiley, Chichester pp 107–137

    Google Scholar 

  • Grobbelaar JU, House WA (1995) Phosphorus as a limiting resource in inland waters; interactions with nitrogen. In: Tiessen H (ed) Phosphorus in the global environment. Transfers, cycles and management. Wiley, Chichester pp 255–274

    Google Scholar 

  • Groenendijk P, Kroes JG (1999) Modelling the nitrogen and phosphorus leaching to groundwater and surface water with ANIMO 3.5. Report 144, Winand Staring Centre, Wageningen

    Google Scholar 

  • Groenendijk P, Renaud LV, Roelsma J (2005) Prediction of N and P leaching to groundwater and surface waters. Alterra Report 983, Wageningen

    Google Scholar 

  • Hack-ten Broeke MJD (2001) Irrigation management for optimizing crop production and nitrate leaching on grassland. Agric Water Manage 49:97–114

    Article  Google Scholar 

  • Hack-ten Broeke MJD, De Groot WJM (1998) Evaluation of nitrate leaching risk at site and farm level. Nutr Cycl Agroecosys 50:271–276

    Article  CAS  Google Scholar 

  • Hansen S, Jensen HE, Nielsen NE, Svendsen H (1990) DAISY, a soil plant system model. NPOforskning fra Miljøstyrelsen, Report no. A10. Danish Environmental Protection Agency, Copenhagen

    Google Scholar 

  • Hansen S, Jensen HE, Nielsen NE, Svendsen H (1991) Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fertil Res 27:245–259

    Article  CAS  Google Scholar 

  • Hansen S, Thirup C, Refsgaard JC, Jensen LS (2001) Modeling nitrate leaching at different scales. Application of the DAISY model. In: Shaffer MJ, Liwang Ma, Hansen S (eds) Modeling carbon and nitrogen dynamics for soil management. Lewis, Boca Raton

    Google Scholar 

  • Henin S, Dupuis M (1945) Essai de bilan de la matiere organique du sol. Ann Agron 15:17–29

    CAS  Google Scholar 

  • Hettelingh JP (1989) Uncertainty in modeling regional environmental systems: the generalisation of a watershed acidification model for predicting broad scale effects, PhD Thesis, Free University, Amsterdam

    Google Scholar 

  • Heuvelink GBM (1998a) Uncertainty analysis in environmental modelling under a change of spatial scale. Nutr Cycl Agroecosyst 50:255–264

    Article  Google Scholar 

  • Heuvelink GBM (1998b) Error propagation in environmental modelling with GIS. Taylor & Francis, London

    Google Scholar 

  • Heuvelink GBM, Pebesma EJ (1999) Spatial aggregation and soil process modelling. Geoderma 89:47–65

    Article  Google Scholar 

  • Hornberger GM, Cosby BJ, Galloway JN (1986) Modeling the effects of acid deposition. Uncertainty and spatial variability in estimation of long-term sulfate dynamics in a region. Water Res 22:1293–1302

    Article  CAS  Google Scholar 

  • Jansen MJW (1998) Prediction error through modelling concepts and uncertainty from basic data. Nutr Cycl Agroecosyst 50:247–253

    Article  Google Scholar 

  • Janssen PHM (1994) Assessing sensitivities and uncertainties in models: a critical evaluation. In: Grasman J, van Straten G (eds) Predictability and nonlinear modeling in natural sciences and economics. Kluwer, Dordrecht, pp 542–553

    Google Scholar 

  • Jarvis N (1994) The MACRO model. Technical description and sample simulations. Reports and dissertations 19, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Jarvis NJ, Larsson MH (1998) The MACRO model (Version 4.1), Technical description, http://130.238.110.134:80/bgf/Macrohtm/macro.htm

    Google Scholar 

  • Jarvis N, Villhoth KG, Ulén B (1999) Modelling particle mobilization and leaching in macroporous soil. Eur J Soil Sci 50:621–632

    Article  Google Scholar 

  • Jensen C, Stougaard B, Østergaard HS (1994) Simulation of the nitrogen dynamics in farm land areas in Denmark 1989-1993. Soil Use Manage 10:111–118

    Article  Google Scholar 

  • Johnes PJ (1996) Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. J Hydrol 183:323–349

    Article  CAS  Google Scholar 

  • Jørgensen SE (1992) Integration of ecosystem theories. Kluwer, Dordrecht

    Google Scholar 

  • Kersebaum KC, Hecker JM, Mirschel W, Wegehenkel M (2006) Modelling water and nutrient dynamics in soil-crop systems: a comparison of simulation models applied on common data sets. In: Kersebaum KC, Hecker JM, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems-applications of different models to common data sets. Proceedings of a workshop held 2004 in Müncheberg, Germany. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Kesik M, Ambus P, Baritz R, Brüggemann N, Butterbach-Bahl K, Damm M, Duyzer J, Horvarth L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert G, Simpson D, Smiatek G, Skiba U, Vesala T, Zechmeister-Boltenstern S (2005) Inventory of N2O and NO emissions from European forest soils. Biogeosciences 2:353–375

    Article  CAS  Google Scholar 

  • Knisel WG, Williams JR (1995) Hydrology component of CREAMS and GLEAMS models. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, CO, pp 1069–1114

    Google Scholar 

  • Kortleven J (1963) Kwantitatieve aspecten van humusopbouw en humusafbraak. PhD thesis, Agricultural University Wageningen

    Google Scholar 

  • Kroes JG, Roelsma J (1998) User’s guide for the ANIMO version 3.5 nutrient leaching model. Technical document 46, DLO-Winand Staring Centre, Wageningen, the Netherlands

    Google Scholar 

  • Kroeze C, Aerts R, van Breemen N, van Dam D, van der Hoek K, Hofschreuder P, Hoosbeek M, de Klein J, Kros J, van Oene H, Oenema O, Tietema A, van der Veeren R, de Vries W (2003) Uncertainties in the fate of nitrogen. I: An overview of sources of uncertainty illustrated with a Dutch case study. Nutr Cycl Agroecosyst 66:43–69

    Article  CAS  Google Scholar 

  • Kros J, de Vries W, Oudendag D, van Leeuwen T (2005) Plausibility of an integrated national model for the evaluation of mitigation options on agricultural nitrogen losses. In: Proceedings of the Third International N conference. Nanjing, China, Oct 2004

    Google Scholar 

  • Larsson MH, Jarvis NJ (1999a) Evaluation of a dual-porosity model to predict field-scale solute transport in a macroporous soil. J Hydrol 215:153–171

    Article  CAS  Google Scholar 

  • Larsson MH, Jarvis NJ (1999b) A dual porosity model to quantify macropore flow effects on nitrate leaching. J Environ Qual 28:1298–1307

    Article  CAS  Google Scholar 

  • Leonard RA, Knisel WG, Still DA (1987) GLEAMS: groundwater loading effects of agricultural management systems. Trans ASAE 30:1403–1418

    Google Scholar 

  • Lewis DR, McGechan MB (2002) A review of field scale phosphorus dynamics models. Biosyst Eng 82:359–380

    Article  Google Scholar 

  • Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J Geophys Res 105:4369–4384

    Article  CAS  Google Scholar 

  • Liwang Ma, Shaffer MJ (2001) A review of carbon and nitrogen processes in nine U.S. soil nitrogen dynamics models. In: Shaffer MJ, Liwang Ma, Hansen S (eds) Modeling carbon and nitrogen dynamics for soil management. Lewis, Boca Raton, pp 55–102

    Google Scholar 

  • McCown RL (2005) New thinking about farmer decision makers. In: Hatfield JR (ed) The farmer’s decision. Soil and Water Conservation Society, Ankeny, IA, pp 11–44

    Google Scholar 

  • McGechan MB, Lewis DR (2002) Sorption of phosphorus by soil, part 1: principles, equations and models. Biosyst Eng 82:1–24

    Article  Google Scholar 

  • McGechan MB, Wu L (2001) A review of carbon and nitrogen processes in European soil nitrogen dynamics models. In: Shaffer MJ, Liwang Ma, Hansen S (eds) Modeling carbon and nitrogen dynamics for soil management. Lewis, Boca Raton, pp 103–172

    Google Scholar 

  • McGechan MB, Jarvis NJ, Hooda PS, Vinten AJA (2002) Parameterisation of the MACRO model to represent leaching of colloidally attached inorganic phosphorus following slurry spreading. Soil Use Manage 18:61–67

    Article  Google Scholar 

  • Mooren MAM, Hoogervorst NJP (1993) CLEAN, the RIVM agriculture model, part 1: model structure, version 1.0 (in Dutch). RIVM report no. 259102005. RIVM, Bilthoven, the Netherlands

    Google Scholar 

  • Mosier AR, Syers JK, Freney JR (eds) (2004) Agriculture and the nitrogen cycle. SCOPE 65. Island Press, Washington

    Google Scholar 

  • Oreskes N (2000) Why believe a computer? Models, measures, and meaning in the natural world. In: Schneiderman JS (ed) The earth around us. Freeman, San Francisco

    Google Scholar 

  • Oreskes N, Shrader-Fechette K, Belitz K (1994) Verification, validation and confirmation of numerical models in earth sciences. Science 263:641–646

    Article  PubMed  CAS  Google Scholar 

  • Overbeek GBJ, Tiktak A, Beusen AHW, Van Puijenbroek PJTM (2001) Partial validation of the Dutch model for emission and transport of nutrients (STONE). In: Optimizing nitrogen management in food and energy production and environmental protection: Proceedings of the 2nd international nitrogen conference on science and policy. Scientific World J 1:194–199

    Google Scholar 

  • Overbeek GBJ, Beusen AHW, Boers PCM, Van den Born GJ, Groenendijk P, Van Grinsven JJM, Kroon T, Van der Meer HG, Oosterom H, Van Puijenbroek PJTM, Roelsma J, Roest CWJ, Rötter R, Tiktak A, Van Tol S (2002) Plausibility document STONE 2.0 (in Dutch). RIVM report 718501001, RIVM, Bilthoven, the Netherlands

    Google Scholar 

  • Pachepsky Y, Radcliffe DE (2003) Scaling methods in soil physics. CRC, Boca Raton

    Google Scholar 

  • Petersen CT, Jòrgensen U, Svendsen H, Hansen S, Jensen HE, Nielsen NE (1995) Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. Eur J Agron 4:77–89

    Google Scholar 

  • Refsgaard JC, Thorsen M, Jensen JB, Kleeschulte S, Hansen S (1999) Large scale modelling of groundwater contamination from nitrate leaching. J Hydrol 221:117–140

    Article  CAS  Google Scholar 

  • Reiniger P, Hutson J, Jansen H, Kragt J, Piehler H, Swarts M, Vereecken H (1990) Evaluation and testing of models describing N transport in soil: a european project. In: Transaction of 14th ICSS, Vol. I. Kyoto, Japan, pp 56–61

    Google Scholar 

  • Rijtema PE, Groenendijk P, Kroes JG (1999) Environmental impact of land use in rural regions. The development, validation and application of model tools for management and policy analysis. No. 1 in Series on environmental science and management. Imperial College Press, London

    Google Scholar 

  • Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecol Modelling 90:229–244

    Article  Google Scholar 

  • Schoumans OF, Groenendijk P (2000) Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands. J Environ Qual 29:111–116

    Article  CAS  Google Scholar 

  • Schoumans OF, Roelsma J, Oosterom HP, Groenendijk P, Wolf J, Van Zeijts H, Van den Born GJ, Van Tol S, Ten Berge HFM, Van der Meer HG, Van Evert FK (2002) Nutrient emission from agricultural land to ground and surface waters for different nutrient surpluses. Model Calculations with STONE 2.0. Cluster report 4, part 1 (in Dutch). ALTERRA/RIVM/Plant Research International, Wageningen/Bilthoven, the Netherlands

    Google Scholar 

  • Sharpley AN, Hedley MJ, Sibbesen E, Hillbricht-Ilkowska A, House WA, Ryszkowsli L (1995) Phosphorus transfers from terrestrial to aquatic ecosystems. In: Tiessen H (ed) Phosphorus in the global environment. Transfers, cycles and management. Wiley, Chichester pp 171–200

    Google Scholar 

  • Silgram, M, Schoumans OF (2004) Modelling approaches: model parameterisation, calibration and performance assessment methods in the EUROHARP project. Report SNO 4740-2003, Norwegian Institute for Water Research, Oslo

    Google Scholar 

  • Smil V (2001) Enriching the Earth. Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press, Cambridge, MA

    Google Scholar 

  • Smith P, Smith JU, Powlson DS, McGill WG, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225

    Article  Google Scholar 

  • Vanclooster M, Viaene P, Christians K (1994) WAVE — a mathematical model for simulating agrochemicals in the soil and vadose environment. Reference and user’s manual (release 2.0). Institute for Land and Water Management, Katholieke Universiteit Leuven, Belgium

    Google Scholar 

  • Vanclooster M, Viaene P, Diels J, Feyen J (1995) A deterministic validation procedure applied to the integrated soil crop model. Ecol Modelling 81:183–195

    Article  CAS  Google Scholar 

  • Van Dam JC (2000) Field scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies. PhD thesis, Wageningen University

    Google Scholar 

  • Van der Salm C, Kros J, Groenenberg JE, de Vries W, Reinds GJ (1995) Validation of soil acidification models with different degrees of process aggregation on an intensively monitored spruce site. In: Trudgill S (ed) Solute modelling in catchment systems. Wiley, pp 327–346

    Google Scholar 

  • Van Noordwijk M (1999) Nutrient cycling in ecosystems versus nutrient budgets of agricultural systems. In: Smaling EMA, Oenema O, Fresco LO (eds) Nutrient disequilibria in agroecosystems. Concepts and case studies. CAB International, Wallingford, pp 1–26

    Google Scholar 

  • Van Tol S, van den Born GJ, van Egmond PM, van der Hoek KW, Hoogervorst NJP, Knol OM (2001) CLEAN2.0, model for computing nitrogen and phosphorus emissions from agriculture. Model structure. Report 773004010, RIVM, Bilthoven, the Netherlands

    Google Scholar 

  • Vereecken H, Vanclooster M, Swerts M, Diels J (1991) Simulating nitrogen behaviour in soil cropped with winter wheat. Fertil Res 27:233–243

    Article  CAS  Google Scholar 

  • Vinten AJA (1999) Predicting nitrate leaching from drained arable soils derived from glacial till. J Environ Qual 28:988–996

    Article  CAS  Google Scholar 

  • Wolf J, Beusen AHW, Goenedijk P, Kroon T, Rötter R, van Zeijts H (2003) The integrated modeling system STONE for calculating nutrient emissions from agricultures in the Netherlands. Environ Model Software 18:597–617

    Article  Google Scholar 

  • Wolf J, Rötter R, Oenema O (2005) Nutrient emission models in environmental policy evaluation at different scales-experience from the Netherlands. Agric Ecosyst Environ 105:291–306

    Article  Google Scholar 

  • Wu L, McGechan MB (1998) A review of C and N processes in four soil N dynamics models. J Agric Eng Res 69:279–305

    Article  Google Scholar 

  • Young RA, Onstad CA, Bosch DD (1995) AGNPS: an agricultural nonpoint source model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, CO, pp 1001–1020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Willigen, P., Oenema, O., de Vries, W. (2007). Modelling Nitrogen and Phosphorus Cycling in Agricultural Systems at Field and Regional Scales. In: Marschner, P., Rengel, Z. (eds) Nutrient Cycling in Terrestrial Ecosystems. Soil Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_13

Download citation

Publish with us

Policies and ethics