Advertisement

References

Chapter
  • 989 Downloads
Part of the Springer Series on Biofilms book series (BIOFILMS, volume 1)

Keywords

Antimicrob Agent Appl Environ Microb Ecol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. 1.
    Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, McCarthy GJ, Milligan KR (2004) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25:1072–1076 CrossRefGoogle Scholar
  2. 2.
    Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475 PubMedCrossRefGoogle Scholar
  3. 3.
    Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, Sauer K (2006) Phenotypic characterization of Streptococcus pneumoniae biofilm development. J Bacteriol 188:2325–2335 PubMedCrossRefGoogle Scholar
  4. 4.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 25:143–169 Google Scholar
  5. 5.
    Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107 PubMedCrossRefGoogle Scholar
  6. 6.
    Auerbach HS, Williams M, Kirkpatrick JA, Colten HR (1985) Alternate day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet 292:686–688 CrossRefGoogle Scholar
  7. 7.
    Balaban N, Goldkorn T, Nhan RT, Dang LB, Scott S, Ridgley RM, Rasooly A, Wright SC, Larrick JW, Rasooly R, Carlson JR (1998) Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science 280:438–440 PubMedCrossRefGoogle Scholar
  8. 8.
    Balaban N, Giacometti A, Cirioni O, Gov Y, Ghiselli R, Mocchegiani F, Viticchi C, Del Prete MS, Saba V, Scalise G, Dell'Acqua G (2003) Use of the quorum-sensing inhibitor RNAIII-Inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J Infect Dis 187:625–630 PubMedCrossRefGoogle Scholar
  9. 9.
    Balkwill D, Reeves RH, Drake GR, Reeves JT, Crocker FH, King MB, Boone DR (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–219 PubMedCrossRefGoogle Scholar
  10. 10.
    Bell CR, Holder-Franklin MA, Franklin M (1982) Correlations between predominant heterotrophic bacteria and physicochemical water quality parameters in two Canadian rivers. Appl Environ Microbiol 43:269–283 PubMedGoogle Scholar
  11. 11.
    Beloin C, Valle J, Latour-Lambert P, Faure P, Kzieminski P, Balestrino D, Haagensen JAJ, Molin S, Prensier G, Arbeille B, Ghigo J-M (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–665 PubMedCrossRefGoogle Scholar
  12. 12.
    Beveridge TJ (2006) Visualizing bacterial cell walls and biofilms. Microbe 1:279–284 Google Scholar
  13. 13.
    Bhattacherjee VP, Mukhopadhyay P, Singh S, Roberts EA, Hackmiller RC, Greene RM, Pisano MM (2004) Laser capture microdissection of fluorescently labeled embryonic cranial neural crest cells. Genesis 39:58–64 PubMedCrossRefGoogle Scholar
  14. 14.
    Blenkinsopp SA, Khoury AE, Costerton JW (1992) Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 58:3770–3773 PubMedGoogle Scholar
  15. 15.
    Bockelmann U, Janke A, Kuhn R, Neu TR, Wecke J, Lawrence JR, Szewzyk U (2006) Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett 262:31–38 PubMedCrossRefGoogle Scholar
  16. 16.
    Bodaly RA, Hecky RE, Fudge RJP (1984) Increases in fish mercury levels in lakes flooded by the Churchill River diversion. Can J Fish Aquat Sci 41:682–691 Google Scholar
  17. 17.
    Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635 PubMedCrossRefGoogle Scholar
  18. 18.
    Boyd A, Chakrabarty AM (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60:2355–2359 PubMedGoogle Scholar
  19. 19.
    Brady RA, Leid JG, Camper AK, Costerton JW, Shirtliff ME (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74:3415–3426 PubMedCrossRefGoogle Scholar
  20. 20.
    Bresnak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487 CrossRefGoogle Scholar
  21. 21.
    Burr MD, Clark SJ, Spear CR, Camper AK (2006) Denaturing gradient gel electrophoresis can rapidly display the bacterial diversity contained in 16 S rDNA clone libraries. Microb Ecol 51:479–486 PubMedCrossRefGoogle Scholar
  22. 22.
    Caccavo JR, Blakemore RP, Lovely DR (1992) A hydrogen-oxidizing, Fe III reducing microorganism from the Great Bay estuary, New Hampshire. Appl Environ Microbiol 58:3211–3216 PubMedGoogle Scholar
  23. 23.
    Caldwell DE, Costerton JW (1996) Are bacterial biofilms constrained to Darwin's concept of evolution through natural selection? Microbiologica 12:347–358 Google Scholar
  24. 24.
    Caldwell MB, Walker RI, Stewart SD, Rogers JE (1983) Simple adult rabbit model for Campylobacter jejuni enteritis. Infect Immun 42:1176–1182 PubMedGoogle Scholar
  25. 25.
    Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776 PubMedGoogle Scholar
  26. 26.
    Chan RCY, Reid G, Bruce AW, Costerton JW (1984) Microbial colonization of human ileal conduits. Appl Environ Microbiol 48:1159–1165 PubMedGoogle Scholar
  27. 27.
    Cheng K-J, Fay JP, Howarth R, Costerton JW (1980) Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl Environ Microbiol 40:613–625 PubMedGoogle Scholar
  28. 28.
    Cheng K-J, Costerton JW (1981) Adherent rumen bacteria: their role in the digestion of plant material, urea, and epithelial cells. In: Ruchebusch Y, Thivend P (eds) Digestive Physiology and Metabolism in Ruminants. MTP Press, Lancaster, UK, pp 227–250 Google Scholar
  29. 29.
    Cheng K-J, Costerton JW (1986) Benefiting ruminants by manipulation of bacteria that degrade fibrous feeds and adhere to the digestive tract surfaces. In: Waldvogel E (ed) Ruminant Digestion. Elsevier, Amsterdam, pp 121–127 Google Scholar
  30. 30.
    Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16 S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–578 PubMedCrossRefGoogle Scholar
  31. 31.
    Cochrane DMG, Brown MRW, Anwar H, Weller PH, Lam K, Costerton JW (1988) Antibody response to Pseudomonas aeruginosa surface protein antigens in a rat model of chronic lung infection. J Med Microbiol 27:255–261 PubMedGoogle Scholar
  32. 32.
    Colwell R, Huq A (2001) Marine ecosystems and cholera. Hydrobiologia 460:141–145 CrossRefGoogle Scholar
  33. 33.
    Cook G, Costerton JW, Darouiche RO (2000) Direct confocal microscopy studies of the bacterial colonization in vitro of a silver-coated heart valve sewing cuff. Int J Antimicrob Agents 13:169–173 PubMedCrossRefGoogle Scholar
  34. 34.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 PubMedCrossRefGoogle Scholar
  35. 35.
    Costerton JW (2004) Microbial ecology comes of age and joins the general ecological community. Proc Natl Acad Sci USA 101:16983–16984 PubMedCrossRefGoogle Scholar
  36. 36.
    Costerton JW (2005) Biofilm theory can guide the treatment of device-related orthopedic infections. Clin Orthop Rel Res 437:7–11 Google Scholar
  37. 37.
    Costerton JW, Lappin-Scott HM (1995) Introduction to microbial biofilms. In: Lappin-Scott HM, Costerton JW (eds) Microbial Biofilms. Cambridge University Press, Cambridge, UK, pp 1–11 Google Scholar
  38. 38.
    Costerton JW, Stewart PS (2001) Battling Biofilms. Sci Am 285:75–81 Google Scholar
  39. 39.
    Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238:86–95 PubMedGoogle Scholar
  40. 40.
    Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464 PubMedCrossRefGoogle Scholar
  41. 41.
    Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE (1994a) Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 38:2803–2809 PubMedGoogle Scholar
  42. 42.
    Costerton JW, Lewandowski Z, deBeer D, Caldwell D, Korber D, James G (1994b) Minireview: biofilms, the customized micronich. J Bacteriol 176:2137–2142 PubMedGoogle Scholar
  43. 43.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745 PubMedCrossRefGoogle Scholar
  44. 44.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 PubMedCrossRefGoogle Scholar
  45. 45.
    Costerton JW, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477 PubMedCrossRefGoogle Scholar
  46. 46.
    Crawford DL, Crawford RL, Pometto AL (1977) Preparation of specific labeled 14C-(Lignin)- and 14C-(Cellulose)-Lignocelluloses and their decomposition by the microflora of soil. Appl Environ Microbiol 33:1247–1251 PubMedGoogle Scholar
  47. 47.
    Cusack FM, Lappin-Scott HM, Singh S, de Rocco M, Costerton JW (1990) Advances in microbiology to enhance oil recovery. Appl Biochem Biotechnol 24/25:885–898 Google Scholar
  48. 48.
    Cusack F, Singh S, McCarthy C, Grieco J, de Rocco M, Nguyen D, Lappin-Scott H, Costerton JW (1992) Enhanced oil recovery: three dimensional sandpack simulation of ultramicrobacteria resuscitation in reservoir formations. J Gen Microbiol 138:647–655 Google Scholar
  49. 49.
    Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284 PubMedCrossRefGoogle Scholar
  50. 50.
    Dasgupta MK, Bettcher KB, Ulan RA, Burns V, Lam K, Dossetor JB, Costerton JW (1987) Relationship of adherent bacterial biofilms to peritonitis in chronic ambulatory peritoneal dialysis. Peritoneal Dialysis Bull 7:168–173 Google Scholar
  51. 51.
    Davey ME, Costerton JW (2006) Molecular genetics analyses of biofilm formation in oral isolates. Periodontology 42:1–14 Google Scholar
  52. 52.
    Davies DG, Geesey GG (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61:860–867 PubMedGoogle Scholar
  53. 53.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 PubMedCrossRefGoogle Scholar
  54. 54.
    deBeer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138 CrossRefGoogle Scholar
  55. 55.
    De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873 PubMedCrossRefGoogle Scholar
  56. 56.
    de Kruif P (1926) The Microbe Hunters. Harcourt Brace, New York Google Scholar
  57. 57.
    de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271 Google Scholar
  58. 58.
    Dohar JE, Hebda PA, Veeh R, Awad M, Costerton JW, Hayes J, Ehrlich GD (2005) Mucosal biofilm formation on middle-ear mucosa in a nonhuman primate model of chronic suppurative otitis media. Laryngoscope 115:1469–1472 PubMedCrossRefGoogle Scholar
  59. 59.
    Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392 PubMedCrossRefGoogle Scholar
  60. 60.
    Donlan RM, Costerton JW (2002) Bioflms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 PubMedCrossRefGoogle Scholar
  61. 61.
    Doring G, Conway SP, Heijerman HG, Hodson ME, Hoiby N, Smyth A, Touw DJ (2000) Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 16:749–767 PubMedCrossRefGoogle Scholar
  62. 62.
    Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36 PubMedCrossRefGoogle Scholar
  63. 63.
    Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743 PubMedCrossRefGoogle Scholar
  64. 64.
    Dunny GM, Leonard BA (1997) Cell-cell communication in Gram-positive bacteria. Annu Rev Microbiol 51:527–564 PubMedCrossRefGoogle Scholar
  65. 65.
    Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–776 CrossRefGoogle Scholar
  66. 66.
    Dutta L, Nuttall HE, Cunningham A, James G, Hiebert R (2005) In situ biofilm barriers: case study of a nitrate groundwater plume, Albuquerque, New Mexico. Remediation 15:101–111 CrossRefGoogle Scholar
  67. 67.
    Dworkin M (1983) Tactic behavior of Myxococcus xanthus. J Bacteriol 154:452–459 PubMedGoogle Scholar
  68. 68.
    Ehrlich GD, Hu FZ, Shen K, Stoodley P, Post JC (2005) Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Rel Res 437:20–24 Google Scholar
  69. 69.
    Espinoza J, Erez O, Romero R (2006) Preconceptional antibiotic treatment to prevent preterm birth in women with a previous preterm delivery. Am J Obstetr Gynecol 194:630–637 CrossRefGoogle Scholar
  70. 70.
    Feldman GL, Krezanoski JZ, Ellis BD, Lam K, Costerton JW (1992) Control of bacterial biofilms on rigid gas permeable lenses. Spectrum 1992:36–39 Google Scholar
  71. 71.
    Fletcher M (1987) How do bacteria attach to solid surfaces? Microbiol Sci 4:133–136 PubMedGoogle Scholar
  72. 72.
    Fuqua WC, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signaling. Nat Rev Mol Cell Biol 3:685–695 PubMedCrossRefGoogle Scholar
  73. 73.
    Fuqua WC, Winans EP, Greenberg EP (1994) Quorum sensing in bacteria: the Lux R - Lux I family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275 PubMedGoogle Scholar
  74. 74.
    Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti-Infect Ther 1:667–683 PubMedCrossRefGoogle Scholar
  75. 75.
    Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphylococcus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186:4486–4491 PubMedCrossRefGoogle Scholar
  76. 76.
    Fux CA, Costerton JW, Stewart PS, Stoodley P (2005a) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40 PubMedCrossRefGoogle Scholar
  77. 77.
    Fux CA, Shirtliff M, Stoodley P, Costerton JW (2005b) Can laboratory reference strains mirror real-world pathogenesis? Trends Microbiol 13:58–63 PubMedCrossRefGoogle Scholar
  78. 78.
    Gantner S, Schmid MA, Durr C, Schuhegger R, Steidle A, Huntzler P, Langebartels C, Eberl L, Hartmann A, Dazzo FB (2006) In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194 PubMedCrossRefGoogle Scholar
  79. 79.
    Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23:1733–1736 PubMedGoogle Scholar
  80. 80.
    Geis G, Leying H, Suerbaum S, Mai U, Opferkuch W (1989) Ultrastructure and chemical analysis of Campylobacter pylori flagella. J Clin Microbiol 27:436–441 PubMedGoogle Scholar
  81. 81.
    Ghannoum M, O'Toole GA (2004) Microbial Biofilms. ASM Press, Washington, DC, p 426 Google Scholar
  82. 82.
    Ghigo J-M (2001) Natural conjugative plasmids induce biofilm development. Nature 412:442–445 PubMedCrossRefGoogle Scholar
  83. 83.
    Gibbons RJ, van Houte J (1975) Dental caries. Annu Rev Med 26:121–136 PubMedCrossRefGoogle Scholar
  84. 84.
    Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microbiol Physiol 46:2002–2056 Google Scholar
  85. 85.
    Goldenberg O, Herrmann S, Marjoram G, Noyer-Weidner M, Hong G, Bereswill S, Gobel UB (2006) Molecular monitoring of the intestinal flora by denaturing high performance liquid chromatography. J Microbiol Methods (Epub ahead of print) Google Scholar
  86. 86.
    Gorby YA, Yanina S, McLean JS, Russo KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuck G, Watanabe K, Iishi SI, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363 PubMedCrossRefGoogle Scholar
  87. 87.
    Greene K (2002) New method for culturing bacteria. Science 296:1000 PubMedCrossRefGoogle Scholar
  88. 88.
    Grimes J (2006) Koch's postulates – then and now. Microbe 1:223–228 Google Scholar
  89. 89.
    Gristina AG, Costerton JW (1984) Bacteria-laden biofilms: a hazard to orthopedic prostheses. Infect Surg 3:655–662 Google Scholar
  90. 90.
    Gristina AG, Hobgood CD, Webb LX, Myrvik QN (1987) Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 8:423–426 PubMedCrossRefGoogle Scholar
  91. 91.
    Gristina AG, Dobbins JJ, Giamara B, Lewis JC, DeVries WC (1988) Biomaterial-centered sepsis and the total artificial heart: microbial adhesion versus tissue integration. J Am Med Assoc 259:870–877 CrossRefGoogle Scholar
  92. 92.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108 PubMedCrossRefGoogle Scholar
  93. 93.
    Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, Wackym PA, Stoodley P, Post JC, Ehrlich GD, Kerschner JE (2006) Direct detection of bacterial biofilms on the middle ear mucosa of children with otitis media. J Am Med Assoc 296:202–211 CrossRefGoogle Scholar
  94. 94.
    Hamilton M, Johnson K, Camper A, Stoodley P, Harkin G, Gillis R, Shope P (1995) Analysis of bacterial spatial patterns at the initial stage of biofilm formation. Biometr J 37:393–408 Google Scholar
  95. 95.
    Harford CG, Leidler V, Hara M, Hamlin A (1949) Effect of the lesion due to influenza virus on the resistance of mice to inhaled pneumococci. J Exp Med 89:53–68 CrossRefPubMedGoogle Scholar
  96. 96.
    Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595 PubMedCrossRefGoogle Scholar
  97. 97.
    Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice AS, Eberl L, Molin S, Givskov M (2002) Inhibition of quorum-sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102 PubMedGoogle Scholar
  98. 98.
    Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407 PubMedGoogle Scholar
  99. 99.
    Hirsch P, Muller M (1986) Methods and sources for the enrichment and isolation of budding, nonprosthecate bacteria from freshwater. Microb Ecol 12:331–341 CrossRefGoogle Scholar
  100. 100.
    Hoiby N (2002) Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cyst Fibros 1:249–254 PubMedCrossRefGoogle Scholar
  101. 101.
    Hoiby N, Fomsgaard A, Jensen ET, Johansen HK, Kronborg G, Pedersen SS, Pressler T, Kharazmi A (1995) The immune response to bacterial biofilms. In: Lappin-Scott HM, Costerton JW (eds) Microbial Biofilms. Cambridge University Press, Cambridge, UK, pp 233–250 Google Scholar
  102. 102.
    Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305 CrossRefGoogle Scholar
  103. 103.
    Hu J, Horn M, Limaye AP, Gautom RK, Fritsche TR (2002) Direct detection of Legionella in respiratory tract specimens by using Fluorescence In Situ Hybridization. In: Marre R (ed) Legionella. ASM Press, Washington, DC Google Scholar
  104. 104.
    Hurd H (2003) Manipulation of medically important insect vectors by their parasites. Annu Rev Entomol 48:141–161 PubMedCrossRefGoogle Scholar
  105. 105.
    Hurtle W, Shoemaker D, Henchal E, Norwood D (2002) Denaturing HPLC for identifying bacteria. Biotechniques 33:386–391 PubMedGoogle Scholar
  106. 106.
    Jass J, Lappin-Scott HM (1996) The efficacy of antibiotics enhanced by electrical currents against Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 38:987–1000 PubMedCrossRefGoogle Scholar
  107. 107.
    Jass J, Surman S, Walker J (2003) Medical biofilms, detection, prevention, and control. Wiley, New York Google Scholar
  108. 108.
    Jensen ET, Kharazmi A, Lam K, Costerton JW, Hoiby N (1990) Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun 58:2383–2385 PubMedGoogle Scholar
  109. 109.
    Kadouri D, O'Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 7:4044–4051 CrossRefGoogle Scholar
  110. 110.
    Kaiser D (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci USA 76:5952–5956 PubMedCrossRefGoogle Scholar
  111. 111.
    Kaiser D (2004) Signaling in Myxobacteria. Annu Rev Microbiol 58:75–98 PubMedCrossRefGoogle Scholar
  112. 112.
    Khoury AE, Olson ME, Lam K, Nickel JC, Costerton JW (1989) Evaluation of the retrograde contamination guard in a bacteriologically challenged rabbit model. Br J Urol 63:384–388 PubMedGoogle Scholar
  113. 113.
    Khoury AE, Lam K, Ellis B, Costerton JW (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38:M174–M178 PubMedCrossRefGoogle Scholar
  114. 114.
    Kim SK, Kaiser D, Kuspa A (1992) Control of cell density and pattern by intercellular signaling in Myxococcus development. Annu Rev Microbiol 46:117–139 PubMedCrossRefGoogle Scholar
  115. 115.
    Kjelleberg S (1993) Starvation in Bacteria. Plenum, New York Google Scholar
  116. 116.
    Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68 PubMedCrossRefGoogle Scholar
  117. 117.
    Koch R (1884) Die aetiologie der tuberkulose, mittheilungen aus dem kaiserlichen Gesundhdeitsamte 2:1–88 Google Scholar
  118. 118.
    Kolenbrander PE, London J (1993) Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252 PubMedGoogle Scholar
  119. 119.
    Kolter R, Losick R (1998) All for one and one for all. Science 280:226–227 PubMedCrossRefGoogle Scholar
  120. 120.
    Korber DR, Lawrence JR, Lappin-Scott HM, Costerton JW (1995) A growth of microorganisms on surfaces. In: Lappin-Scott HM, Costerton JW (eds) Microbial Biofilms. Cambridge University Press, Cambridge, UK, pp 15–45 Google Scholar
  121. 121.
    Kowalewska-Grochowska K, Richards R, Moysa GL, Lam K, Costerton JW, King EG (1991) Guidewire catheter change in central venous catheter biofilm formation in burn population. Chest 100:1090–1095 PubMedGoogle Scholar
  122. 122.
    Krumbein WE, Paterson DM, Zavarzin GA (2003) Fossil and Recent Biofilms: A Natural History of Life on Earth. Springer, Berlin Heidelberg New York Google Scholar
  123. 123.
    Kudo H, Cheng K-J, Costerton JW (1987) Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can J Microbiol 33:244–248 PubMedCrossRefGoogle Scholar
  124. 124.
    Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG 1. J Bacteriol 186:692–698 PubMedCrossRefGoogle Scholar
  125. 125.
    Lam J, Chan R, Lam K, Costerton JW (1980) Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28:546–556 PubMedGoogle Scholar
  126. 126.
    Lambe DW Jr, Ferguson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW (1991) Foreign-body-associated experimental osteomyelitis induced with Bacteroides fragilis and Staphylococcus epidermidis in rabbits. Clin Ortho 266:285–294 Google Scholar
  127. 127.
    Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62:1244–1263 PubMedGoogle Scholar
  128. 128.
    Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinberg A (1995) Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63:3878–3885 PubMedGoogle Scholar
  129. 129.
    Lappin-Scott HM, Costerton JW (1995) Microbial Biofilms. Cambridge University Press, Cambridge, UK Google Scholar
  130. 130.
    Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567 PubMedGoogle Scholar
  131. 131.
    Lawrence JR, Swerhone GDW, Leppard GG, Araki T, Zhang X, West MM, Hitchcock AP (2003) Scanning transmission X-Ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69:5543–5554 PubMedCrossRefGoogle Scholar
  132. 132.
    Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194 Google Scholar
  133. 133.
    Leid JG, Shirtliff ME, Costerton JW, Stoodley P (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345 PubMedCrossRefGoogle Scholar
  134. 134.
    Leung JWC, Ling TKW, Chan RCY, Cheung SE, Lai CW, Sung JJY, Chung SCS, Cheng AFB (1994) Antibiotics, biliary spesis, and bile duct stones. Gastrointest Endosc 40:716–721 PubMedGoogle Scholar
  135. 135.
    Lewandowksi Z, Stoodley P (1995) Flow induced vibrations, drag force, and pressure drop in conduits covered with biofilm. Wat Sci Technol 32:19–26 CrossRefGoogle Scholar
  136. 136.
    Lewandowski Z, Altobelli SA, Fukushima E (1993) NMR and microelectrode studies of hydrodynamics and kinetics in biofilms. Biotechnol Prog 9:40–45 CrossRefGoogle Scholar
  137. 137.
    Lewandowski Z, Stoodley P, Altobelli S (1995) Experimental and conceptual studies on mass transport in biofilms. Wat Sci Technol 31:153–162 CrossRefGoogle Scholar
  138. 138.
    Lewis K (2001) The riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007 PubMedCrossRefGoogle Scholar
  139. 139.
    Liu W, Smith DI, Rechtzigel KJ, Thibodeau SN, James CD (1998) Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res 26:1396–1400 PubMedCrossRefGoogle Scholar
  140. 140.
    Long SR (2001) Genes and signals in the Rhizobium-Legume symbiosis. Plant Physiol 125:69–72 PubMedCrossRefGoogle Scholar
  141. 141.
    Majors PD, Minard KR, Ackerman EJ, Holtom GR, Hopkins DF, Weber TJ, Wind RA (2002) A combined confocal and magnetic resonance microscope for biological studies. Rev Sci Instrum 73:4329–4338 CrossRefGoogle Scholar
  142. 142.
    Maki DK, Weise CE, Sarafin HW (1977) A semi-quantitative method of identifying intravenous catheter-related infections. New Engl J Med 296:1305–1309 PubMedCrossRefGoogle Scholar
  143. 143.
    Marrie TJ, Costerton JW (1983) A scanning and transmission electron microscopy study of the surfaces of intrauterine contraceptive devices. Am J Obstet Gynecol 146:384–394 PubMedGoogle Scholar
  144. 144.
    Marrie TJ, Costerton JW (1984) Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J Clin Microbiol 19:687–693 PubMedGoogle Scholar
  145. 145.
    Marrie TJ, Nelligan J, Costerton JW (1982) A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66:1339–1341 PubMedGoogle Scholar
  146. 146.
    Marsh PD, Bradshaw DJ (1995) Dental plaque as a biofilm. J Ind Microbiol 15:169–175 PubMedCrossRefGoogle Scholar
  147. 147.
    Marsh EJ, Luo H, Wang H (2003) A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett 228:203–210 PubMedCrossRefGoogle Scholar
  148. 148.
    Marshall BJ, Warren JR (1984) Unidentified curved bacilli on the gastric epithelium of patients with gastritis and peptic ulceration. Lancet 1:1311–1315 PubMedCrossRefGoogle Scholar
  149. 149.
    Marshall KC, Stout R, Mitchell R (1971) Mechanisms of the initial events in the sorbtion of marine bacteria to surfaces. J Gen Microbiol 68:337–348 Google Scholar
  150. 150.
    Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425 PubMedCrossRefGoogle Scholar
  151. 151.
    Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314 PubMedCrossRefGoogle Scholar
  152. 152.
    May T, Ito A, Okabe S (2006) F-phenocopies: the characteristics of natural conjugative plasmid-bearing Escherichia coli biofilms. In: Proceedings of the 11th meeting of the International Society for Microbial Ecology. Abstract on page 173 Google Scholar
  153. 153.
    Mayberry-Carson KJ, Tober-Meyer B, Smith JK, Lambe DW Jr, Costerton JW (1984) Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with Staphylococcus aureus. Infect Immun 43:825–833 PubMedGoogle Scholar
  154. 154.
    McGee ZA, Jensen RL, Clemens CM, Taylor-Robinson D, Johnson A, Gregg CR (1999) Gonococcal infection of human fallopian tube mucosa in organ culture: Relationship of mucosal tissue TNF-[alpha] concentration to sloughing of ciliated cells. Sexually Transmitted Dis 26:160–165 CrossRefGoogle Scholar
  155. 155.
    McLean RJ, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154:259–263 PubMedCrossRefGoogle Scholar
  156. 156.
    Mills J, Pulliam L, Dall L, Marzouk J, Wilson W, Costerton JW (1984) Exopolysaccharide production by viridans streptococci in experimental endocarditis. Infect Immun 43:359–367 PubMedGoogle Scholar
  157. 157.
    Mitchell P, Moyle J (1965) Evidence discriminating between the chemical and the chemiosmotic mechanisms of electron transport phosphorylation. Nature 208:1205–1206 PubMedCrossRefGoogle Scholar
  158. 158.
    MÃller S, Kristensen CS, Poulsen LK, Carstensen JM, Molin S (1995) Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters. Appl Environ Microbiol 61:741–748 Google Scholar
  159. 159.
    MÃller S, Korber DR, Wolfaardt GM, Molin S, Caldwell FR (1997) Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 63:2432–2438 Google Scholar
  160. 160.
    Morck DW, Raybould TJG, Acres SD, Babiuk LA, Nelligan J, Costerton JW (1987) Electron microscopic description of glycocalyx and fimbriae on the surface of Pasturella haemolytica. Can J Vet Res 51:83–88 PubMedGoogle Scholar
  161. 161.
    Morck DW, Costerton JW, Bolingbroke DO, Ceri H, Boyd ND, Olson ME (1990) A guinea pig model of bovine pneumonic Pasteurellosis. Can J Vet Res 54:139–145 PubMedGoogle Scholar
  162. 162.
    Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112 PubMedCrossRefGoogle Scholar
  163. 163.
    Moter A, Leist G, Rudolph R, Schrank K, Choi BK, Wagner M, Gobel UB (1998) Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. Microbiology 144:2459–2467 PubMedGoogle Scholar
  164. 164.
    Murga R, Foster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in model potable water system. Microbiology 147:3121–3126 PubMedGoogle Scholar
  165. 165.
    Nealson KH (1997) Sediment bacteria: Who's there, what are they doing, and what's new? Annu Rev Earth Planetary Sci 25:403–434 CrossRefGoogle Scholar
  166. 166.
    Nealson KH, Saffarini D (1994) Iron and Manganese in anaerobic respiration: environmental significance, Physiology, and regulation. Annu Rev Microbiol 48:311–343 PubMedCrossRefGoogle Scholar
  167. 167.
    Nelson JW, Tredgett MW, Sheehan JK, Thornton DJ, Notman D, Govan JR (1990) Mucophilic and chemotactic properties of Pseudomonas aeruginosa in relation to pulmonary colonization in cystic fibrosis. Infect Immun 58:1489–1495 PubMedGoogle Scholar
  168. 168.
    Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG (2002) Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 62:7280–7283 PubMedGoogle Scholar
  169. 169.
    Newman DK, Banfield JF (2002) Geomicrobiology: how molecular scale interactions underpin biogeochemical systems. Science 296:1071–1077 PubMedCrossRefGoogle Scholar
  170. 170.
    Nguyen D, Singh PK (2006) Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc Natl Acad Sci USA 103:8305–8306 PubMedCrossRefGoogle Scholar
  171. 171.
    Nichols WW (1991) Biofilms, antibiotics, and penetration. Rev Med Microbiol 2:177–181 Google Scholar
  172. 172.
    Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of cells of Pseudomonas aeruginosa growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624 PubMedGoogle Scholar
  173. 173.
    Nickel JC, Costerton JW, McLean JC, Olson M (1994) Bacterial biofilms: influence on the pathogenesis, diagnosis and treatment of urinary-tract infections. J Antimicrob Chemother 33:31–41 PubMedGoogle Scholar
  174. 174.
    Nielsen PR, Lee WC, Lewandowski Z, Morrison M, Characklis W (1993) Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling 7:267–284 Google Scholar
  175. 175.
    Norris P, Noble M, Francolini I, Vinogradov AM, Stewart PS, Ratner BD, Costerton JW, Stoodley P (2005) Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-Hydroxyethyl Methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention. Antimicrob Agents Chemother 49:4272–4279 PubMedCrossRefGoogle Scholar
  176. 176.
    Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine Vibrio. Appl Environ Microbiol 32:617–622 PubMedGoogle Scholar
  177. 177.
    Olson ME, Lam K, Bosey GP, King EG, Costerton JW (1992) Evaluation of strategies for central venous catheter replacement. Crit Care Med 20:797–804 PubMedCrossRefGoogle Scholar
  178. 178.
    O'Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461 PubMedCrossRefGoogle Scholar
  179. 179.
    O'Toole GA, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79 PubMedCrossRefGoogle Scholar
  180. 180.
    Oosthuizen MC, Steyn B, Theron J, Cosette P, Lindsay D, von Holy A, Brozel VS (2002) Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 68:2770–2780 PubMedCrossRefGoogle Scholar
  181. 181.
    Palmer RJ, Gordon SM, Cisar JO, Kolenbrander PE (2003) Coaggregation-mediated interactions of Streptococci and Acinomyces detected in initial human dental plaque. J Bacteriol 185:3400–3409 PubMedCrossRefGoogle Scholar
  182. 182.
    Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130 PubMedCrossRefGoogle Scholar
  183. 183.
    Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701 PubMedCrossRefGoogle Scholar
  184. 184.
    Parsek MR, Fuqua C (2004) Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 86:4427–4440 CrossRefGoogle Scholar
  185. 185.
    Pelling AE, Li Y, Shi W, Gimzewski JK (2005) Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Natl Acad Sci USA 102:6484–6489 PubMedCrossRefGoogle Scholar
  186. 186.
    Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234 PubMedCrossRefGoogle Scholar
  187. 187.
    Post JC (2001) Direct evidence of bacterial biofilms in otitis media. Laryngoscope 111:2083–2094 PubMedCrossRefGoogle Scholar
  188. 188.
    Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002 PubMedGoogle Scholar
  189. 189.
    Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68:4457–4464 PubMedCrossRefGoogle Scholar
  190. 190.
    Purevdorj-Gage L, Costerton JW, Stoodley P (2005) Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151:1569–1576 PubMedCrossRefGoogle Scholar
  191. 191.
    Raad I (1998) Intravascular-catheter-related infections. Lancet 351:893–898 PubMedCrossRefGoogle Scholar
  192. 192.
    Raghunathan A, Ferguson HR, Bornarth CJ, Song W, Driscoll M, Lasken RS (2005) Genomic DNA amplification from a single bacterium. Appl Environ Microbiol 71:3342–3347 PubMedCrossRefGoogle Scholar
  193. 193.
    Rayner MG, Zhang Y, Gorry MC, Chen Y, Post JC, Ehrlich GD (1998) Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. J Am Med Assoc 279:296–299 CrossRefGoogle Scholar
  194. 194.
    Reed WP, Moody MR, Newman KA, Light PD, Costerton JW (1986) Bacterial colonization of hemasite access devices. Surgery 99:308–316 PubMedGoogle Scholar
  195. 195.
    Rice AR, Hamilton MA, Camper AK (2003) movement, replication, and emigration rates of individual bacteria in a biofilm. Microb Ecol 45:163–172 PubMedCrossRefGoogle Scholar
  196. 196.
    Rivera ING, Chun J, Huq A, Sack RB, Colwell RR (2001) Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol 67:2421–2429 PubMedCrossRefGoogle Scholar
  197. 197.
    Robinson DH (2005) Pleomorphic mammalian tumor-derived bacteria self-organize as multicellular mammalian eukaryotic-like organisms: morphogenetic properties in vitro, possible origins, and possible roles in mammalian tumor ecologies. Med Hypotheses 63:177–188 CrossRefGoogle Scholar
  198. 198.
    Romero R, Espinoza J, Mazor M (2004) Can endometrial infection/inflammation explain implantation failure, spontaneous abortion, and preterm birth after in vitro fertilization? Fertil Steril 82:799–804 PubMedCrossRefGoogle Scholar
  199. 199.
    Rupp CJ, Fux CA, Stoodley P (2005) Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 71:2175–2178 PubMedCrossRefGoogle Scholar
  200. 200.
    Sadhu K, Domingue PAG, Chow AW, Nelligan J, Bartlett K, Costerton JW (1989) A morphological study of the in situ tissue-associated autochthonous microflora of the human vagina. Microb Ecol Health Dis 2:99–106 CrossRefGoogle Scholar
  201. 201.
    Sanderson SS, Stewart PS (1997) Evidence of bacterial adaptation to monochloramine in Pseudomonas aeruginosa biofilms and evaluation of biocide action model. Biotechnol Bioeng 56:201–209 CrossRefPubMedGoogle Scholar
  202. 202.
    Sanderson AR, Leid J, Hunsaker D (2006) Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope 116:1121–1126 PubMedCrossRefGoogle Scholar
  203. 203.
    Sauer K, Camper AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183:6579–6589 PubMedCrossRefGoogle Scholar
  204. 204.
    Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154 PubMedCrossRefGoogle Scholar
  205. 205.
    Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476 PubMedCrossRefGoogle Scholar
  206. 206.
    Scheuerman TR, Camper AK, Hamilton MA (1998) Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci 208:23–33 PubMedCrossRefGoogle Scholar
  207. 207.
    Schoolnik GK, Voskuil MI, Schnappinger D, Yildiz FH, Meibom K, Dolganov NA, Wilson MA, Chong KH (2001) Whole genome DNA microarray expression analysis of biofilm development by Vibrio cholerae O1 E1 Tor. Methods Enzymol 336:3–18 PubMedCrossRefGoogle Scholar
  208. 208.
    Selan L, Passariello L, Rizzo L, Varesi P, Speziale F, Renzini G, Thaller MC, Fioriani P, Rossolini GM (2002) Diagnosis of vascular graft infections with antibodies against staphylococcal slime antigens. Lancet 359:2166–2168 PubMedCrossRefGoogle Scholar
  209. 209.
    Shen KP, Antalis P, Gladitz J, Sayeed S, Ahmed A, Yu S, Hayes J, Johnson S, Dice B, Dopico R, Keefe R, Janto B, Chong W, Goodwin J, Wadowsky RM, Erdos G, Post JC, Ehrlich GD, Hu F (2005) Identification, distribution, and expression of novel genes in 10 clinical isolates of Haemophilus influenzae. Infect Immun 73:3479–3491 PubMedCrossRefGoogle Scholar
  210. 210.
    Shi W, Zusman DR (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci USA 90:3378–3382 PubMedCrossRefGoogle Scholar
  211. 211.
    Shirtliff ME, Leid JG, Costerton JW (2003) Basic science in musculoskeletal infections. In: Mader JT, Calhoun JH (eds) Musculoskeletal Infections. Dekker, New York, pp 1–61 Google Scholar
  212. 212.
    Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welch MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764 PubMedCrossRefGoogle Scholar
  213. 213.
    Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555 PubMedCrossRefGoogle Scholar
  214. 214.
    Sottile FD, Marrie TJ, Prough DS, Hobgood CD, Gower DJ, Webb LX, Costerton JW, Gristina AG (1986) Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to endotracheal tubes. Crit Care Med 14:265–270 PubMedCrossRefGoogle Scholar
  215. 215.
    Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751 PubMedCrossRefGoogle Scholar
  216. 216.
    Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346 PubMedCrossRefGoogle Scholar
  217. 217.
    Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40:2517–2522 PubMedGoogle Scholar
  218. 218.
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138 PubMedCrossRefGoogle Scholar
  219. 219.
    Stoodley P, deBeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716 PubMedGoogle Scholar
  220. 220.
    Stoodley P, deBeer D, Lappin-Scott HM (1997) Influence of electric fields and pH on biofilm structure as related to the bioelectric effect. Antimicrob Agents Chemother 41:1876–1879 PubMedGoogle Scholar
  221. 221.
    Stoodley P, Lewandowski Z, Boyle JD, LappinScott HM (1998) Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol Bioeng 57:536–544 PubMedCrossRefGoogle Scholar
  222. 222.
    Stoodley P, Dodds I, Lewandowski Z, Cunningham AB, Boyle JD, Lappin-Scott HM (1999a) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28S Google Scholar
  223. 223.
    Stoodley P, Boyle JD, deBeer D, Lappin-Scott HM (1999b) Evolving perspectives in biofilm structure. Biofouling 14:75–90 Google Scholar
  224. 224.
    Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999c) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1:447–457 PubMedCrossRefGoogle Scholar
  225. 225.
    Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW (2001) Growth and detachment of cell clusters from mature mixed species biofilms. Appl Environ Microbiol 67:5608–5613 PubMedCrossRefGoogle Scholar
  226. 226.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209 PubMedCrossRefGoogle Scholar
  227. 227.
    Suci PA, Mittelman MW, Yu FP, Geesey GG (1994) Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38:2125–2133 PubMedGoogle Scholar
  228. 228.
    Sullam PM, Drake TA, Sande MA (1985) Pathogenesis of endocarditis. Am J Med 78:110–115 PubMedCrossRefGoogle Scholar
  229. 229.
    Sung JY, Shaffer EA, Olson ME, Leung JW, Lam K, Costerton JW (1991) Bacterial invasion of the biliary system by way of the portal-venous system. Hepatology 14:313–317 PubMedCrossRefGoogle Scholar
  230. 230.
    Sung JY, Leung JWC, Shaffer EA, Lam K, Olson ME, Costerton JW (1992) Ascending infection of the biliary tract after surgical sphincterotomy and biliary stenting. J Gastroenterol Hepatol 7:240–245 PubMedGoogle Scholar
  231. 231.
    Sung JY, Leung JWC, Shaffer EA, Lam K, Costerton JW (1993) Bacterial biofillm, brown pigment stone and blockage of biliary stents. J Gastroenterol Hepatol 8:28–34 PubMedGoogle Scholar
  232. 232.
    Sutherland IW (1977) Surface Carbohydrates of the Prokaryotic Cell. Academic, London Google Scholar
  233. 233.
    Szomolay B, Klapper I, Dockery J, Stewart PS (2005) Adaptive responses to antimicrobial agents in biofilms. Environ Microbiol 7:1186–1191 PubMedCrossRefGoogle Scholar
  234. 234.
    Tenney JH, Moody MR, Newman KA, Schimpff SC, Wade JC, Costerton JW, Reed WP (1986) Adherent microorganisms on lumenal surfaces of long-term intravenous catheters: importance of Staphylococcus epidermidis in patients with cancer. Arch Internal Med 146:1949–1954 CrossRefGoogle Scholar
  235. 235.
    Thar R, KÃhl M (2002) Conspicuous veils formed by vibroid bacteria in sulfidic mine sediment. Appl Environ Microbiol 68:6310–6320 PubMedCrossRefGoogle Scholar
  236. 236.
    Tolker-Nielsen T (2006) Physiological differentiation in Pseudomonas aeruginosa biofilms. Proc Int Soc Microb Ecol, Abstract 163 Google Scholar
  237. 237.
    Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482–6489 PubMedCrossRefGoogle Scholar
  238. 238.
    van Loosdrecht MC, Norde W, Zehnder AJ (1990) Physical chemical description of bacterial adhesion. J Biomater Appl 5:91–106 PubMedGoogle Scholar
  239. 239.
    Veeh RH, Shirtliff ME, Petik JR, Flood JA, Davis CC, Seymour JL, Hansmann MA, Kerr KM, Pasmore ME, Costerton JW (2003) Detection of Staphylococcus aureus biofilm on tampons and menses components. J Infect Dis 188:519–530 PubMedCrossRefGoogle Scholar
  240. 240.
    Vorachit M, Lam K, Jayanetra P, Costerton JW (1995a) The study of the pathogenicity of Burkholderia pseudomallei – a guinea pig model. J Infect Dis Antimicrob Agents 12:115–121 Google Scholar
  241. 241.
    Vorachit M, Lam K, Jayanetra P, Costerton JW (1995b) Electron microscopy study of the mode of growth of Pseudomonas pseudomallei in vitro and in vivo. J Trop Med Hyg 98:379–391 PubMedGoogle Scholar
  242. 242.
    Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridization for the identification and characterization of prokaryotes. Curr Opin Microbiol 6:302–309 PubMedCrossRefGoogle Scholar
  243. 243.
    Wall D, Kaiser D (1999) Type IV pili and cell motility. Mol Microbiol 32:1–10 PubMedCrossRefGoogle Scholar
  244. 244.
    Ward KH, Olson ME, Lam K, Costerton JW (1992) Mechanism of persistent infection associated with peritoneal implants. J Med Microbiol 36:406–413 PubMedCrossRefGoogle Scholar
  245. 245.
    Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370 PubMedGoogle Scholar
  246. 246.
    Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592 PubMedCrossRefGoogle Scholar
  247. 247.
    Wellman N, Fortun SM, McLeod BR (1996) Bacterial biofilms and the bioelectric effect. Antimicrob Agents Chemother 40:2012–2014 PubMedGoogle Scholar
  248. 248.
    Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487 PubMedCrossRefGoogle Scholar
  249. 249.
    Woods DE, Straus DC, Johanson WG Jr, Bass JA (1981) Role of fibronectin in the prevention of the adherence of Pseudomonas aeruginosa to buccal cells. J Infect Dis 143:784–790 PubMedGoogle Scholar
  250. 250.
    Wu H, Song Z, Hentzer M, Andersen JB, Heydorn A, Mathee K, Moser C, Eberl L, Molin S, Hoiby N, Givskov M (2000) Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology 146:2481–2493 PubMedGoogle Scholar
  251. 251.
    Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N (2004) Synthetic furanones inhibit quorum sensing and enhance bacterial clearance in Pseudomonas aeruginosa infections in mice. J Antimicrob Chemother 53:1054–1061 PubMedCrossRefGoogle Scholar
  252. 252.
    Wullt B, Connell H, Rollano P, Mansson W, Coleen S, Svanborg C (1998) Urodynamic factors influence the duration of Escherichia coli bacteriuria in deliberately colonized cases. J Urol 159:2057–2062 PubMedCrossRefGoogle Scholar
  253. 253.
    Wyndham RC, Costerton JW (1981) In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands deposit. Appl Environ Microbiol 41:791–800 PubMedGoogle Scholar
  254. 254.
    Wyndham RC, Cashore AE, Nakatsu CH, Peel MC (1994) Catabolic transposons. Biodegradation 5:323–342 PubMedCrossRefGoogle Scholar
  255. 255.
    Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197 PubMedCrossRefGoogle Scholar
  256. 256.
    Xie H, Cook GS, Costerton JW, Bruce G, Rose TM, Lamont RJ (2000) Intergeneric communication in dental plaque biofilms. J Bacteriol 182:7067–7069 PubMedCrossRefGoogle Scholar
  257. 257.
    Zhong W, Millsap K, Bialkowska-Hobrzanska H, Reid G (1998) Differentiation of Lactobacillus species by molecular typing. Appl Environ Microbiol 64:2418–2423 PubMedGoogle Scholar
  258. 258.
    ZoBell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56 PubMedGoogle Scholar

Suggested Reading

  1. 259.
    Caldwell DE, Costerton JW (1996) Are bacterial biofilms constrained to Darwin's concept of evolution through natural selection? Microbiologica 12:347–358 Google Scholar
  2. 260.
    Costerton JW (2005) Biofilm theory can guide the treatment of device-related orthopedic infections. Clin Orthop Rel Res 437:7–11 Google Scholar
  3. 261.
    Costerton JW, Stewart PS (2001) Battling biofilms. Sci Am 285:75–78 Google Scholar
  4. 262.
    Costerton JW, Geesey GG, Cheng GK (1978) How bacteria stick. Sci Am 238:86–95 PubMedCrossRefGoogle Scholar
  5. 263.
    Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464 PubMedCrossRefGoogle Scholar
  6. 264.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745 PubMedCrossRefGoogle Scholar
  7. 265.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 PubMedCrossRefGoogle Scholar
  8. 266.
    Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122 PubMedCrossRefGoogle Scholar
  9. 267.
    Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392 PubMedCrossRefGoogle Scholar
  10. 268.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193 PubMedCrossRefGoogle Scholar
  11. 269.
    Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36 PubMedCrossRefGoogle Scholar
  12. 270.
    Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743 PubMedCrossRefGoogle Scholar
  13. 271.
    Filloux A, Vallet I (2003) Biofilm: set-up and organization of a bacterial community. Med Sci Paris 19:77–83 (in French) PubMedGoogle Scholar
  14. 272.
    Fuqua WC, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signaling. Nat Rev Mol Cell Biol 3:685–695 PubMedCrossRefGoogle Scholar
  15. 273.
    Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti-Infect Ther 1:667–683 PubMedCrossRefGoogle Scholar
  16. 274.
    Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40 PubMedCrossRefGoogle Scholar
  17. 275.
    Ghannoum M, O'Toole GA (2004) Microbial biofilms. ASM, Washington, DC, pp 1–426 Google Scholar
  18. 276.
    Gibbons RJ, van Houte J (1975) Dental caries. Annu Rev Med 26:121–136 PubMedCrossRefGoogle Scholar
  19. 277.
    Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microbiol Physiol 46:202–256 Google Scholar
  20. 278.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108 PubMedCrossRefGoogle Scholar
  21. 279.
    Hoiby N (2002) Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cyst Fibros 1:249–254 PubMedCrossRefGoogle Scholar
  22. 280.
    Jass J, Surman S, Walker J (2003) Medical biofilms, detection, prevention, and control. Wiley, New York Google Scholar
  23. 281.
    Kaiser D (2004) Signaling in Myxobacteria. Annu Rev Microbiol 58:75–98 PubMedCrossRefGoogle Scholar
  24. 282.
    Kariyama R, Kumon H (2003) Biofilm infections. Nippon Rinsho 61:266–271 (in Japanese) PubMedGoogle Scholar
  25. 283.
    Kjelleberg S (1993) Starvation in Bacteria. Plenum, New York Google Scholar
  26. 284.
    Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5:254–258 PubMedCrossRefGoogle Scholar
  27. 285.
    Kolter R, Losick R (1998) All for one and one for all. Science 280:226–227 PubMedCrossRefGoogle Scholar
  28. 286.
    Krumbein WE, Paterson DM, Zavarzin GA (2003) Fossil and Recent Biofilms: A Natural History of Life on Earth. Springer, Berlin Heidelberg New York Google Scholar
  29. 287.
    Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62:1244–1263 PubMedGoogle Scholar
  30. 288.
    Lappin-Scott HM, Costerton JW (1995) Microbial Biofilms. Cambridge University Press, Cambridge, UK Google Scholar
  31. 289.
    Lindow SE, Hecht-Poinar EI, Elliot VJ (2002) Phyllosphere Microbiology. APS, St Paul, MN Google Scholar
  32. 290.
    Mateo MM, Maestre VJR (2004) Biofilm: model of bacterial communication and resistance to antimicrobial agents. Rev Esp Quimioter 17:26–28 (in Spanish) Google Scholar
  33. 291.
    Morris DP, Hagr A (2005) Biofilm: Why the sudden interest? J Otolaryngol Suppl 2:S56–S59 Google Scholar
  34. 292.
    O'Toole GA, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79 PubMedCrossRefGoogle Scholar
  35. 293.
    Palmer RJ (2004) Peter Hirsch and biofilms: microbial ecology's role in a new field. Microb Ecol 47:200–204 PubMedCrossRefGoogle Scholar
  36. 294.
    Parsek MR, Fuqua C (2004) Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 86:4427–4440 CrossRefGoogle Scholar
  37. 295.
    Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701 PubMedCrossRefGoogle Scholar
  38. 296.
    Potera C (1996) Biofilms invade microbiology. Science 273:1795–1797 PubMedCrossRefGoogle Scholar
  39. 297.
    Raad I (1998) Intravascular-catheter-related infections. Lancet 351:893–898 PubMedCrossRefGoogle Scholar
  40. 298.
    Ramadan HH, Sanclement JA, Thomas JG (2005) Chronic rhinosinusitis and biofilms. Otolaryngol Head Neck Surg 132:414–417 PubMedCrossRefGoogle Scholar
  41. 299.
    Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7:602–609 PubMedCrossRefGoogle Scholar
  42. 300.
    Slavkin HC (1997) Biofilms, microbial ecology, and Antonie van Leeuwenhoek. J Am Dent Assoc 128:492–495 PubMedGoogle Scholar
  43. 301.
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138 PubMedCrossRefGoogle Scholar
  44. 302.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209 PubMedCrossRefGoogle Scholar
  45. 303.
    Sutherland IW (1977) Surface Carbohydrates of the Prokaryotic Cell. Academic, London Google Scholar
  46. 304.
    Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585 PubMedCrossRefGoogle Scholar
  47. 305.
    Wilson M (2005) Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease. Cambridge University Press, Cambridge, UK Google Scholar
  48. 306.
    Wilson M, Devine D (2003) Medical Implications of Biofilms. Cambridge University Press, Cambridge, UK, pp 1–173 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations