Skip to main content

Warping a Neuro-Anatomy Atlas on 3D MRI Data with Radial Basis Functions

  • Conference paper

Part of the book series: IFMBE Proceedings ((IFMBE,volume 15))

Abstract

Navigation for neurosurgical procedures must be highly accurate. Often small structures are hardly seen on pre-operative scans. Fitting a 3D electronic neuro-anatomical atlas on the data assists with the localization of small structures and dim outlines. During surgery also brainshifts occurs. With intra-operative MRI the pre-operative MRI can be warped to the real 3D situation. The paper describes a general 3D landmark-based warping method, based on radial basis functions (thin plate splines) for data of any number of dimensions, including all code in Mathematica.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bookstein, F. (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Analysis Machine Intelligence 11(6): 567–585.

    Article  Google Scholar 

  2. Carr J.C., Fright W.R., Beatson R.K. (1997) Surface interpolation with radial basis functions for medical imaging. IEEE transactions on medical imaging, Vol. 16, No. 1.

    Google Scholar 

  3. Free S.L., O’Higgins P, Maudgil D.D., Dryden I.L., (2001) Landmark-Based morphometrics of the normal adult brain using MRI. NeuroImage 13 801–813.

    Article  CAS  PubMed  Google Scholar 

  4. Grachev I.D., Berdichevsky D., Rauch S.L. (1999) A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks. NeuroImage 9, 250–268.

    Article  CAS  PubMed  Google Scholar 

  5. Levin D., Dey D., Slomka P.J. (2004) Acceleration of 3D, nonlinear warping using standard video graphics hardware: implementation and initial validation. Computerized Medical Imaging and Graphics 28: 471–483.

    Article  PubMed  Google Scholar 

  6. Nowinski W.L., Thirunavuukarasuu A. (2001) Atlas-assisted localization analysis of functional images. Medical Image Analysis 5, 207–220.

    Article  CAS  PubMed  Google Scholar 

  7. Nowinski W.L., (2001) Technical Report: Modified Talairach Landmarks. Acta Neurochir 143: 1045–1057 Wien.

    Article  CAS  PubMed  Google Scholar 

  8. Nowinski W.L., Belov D. (2003) The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet. NeuroImage 20, 50–57.

    Article  PubMed  Google Scholar 

  9. Rizzo G., Scifo P., Gilardi M.C. (1997) Matching a computerized brain atlas to multimodal medical images, NeuroImage 6, 59–69.

    Article  CAS  PubMed  Google Scholar 

  10. Talairach J., Tournoux P. (1988) Co-planar stereotactic atlas of the human brain. Georg Thiem Verlag/Thieme Medical Publishers, Stuttgart New York.

    Google Scholar 

  11. Talairach J., Tournoux P. (1993) Referentially oriented cerebral MRI anatomy. Atlas of stereotaxic anatomical correlations for gray and white matter. GeorgThieme Verlag/Thieme Medical Publishers, Stuttgart New York.

    Google Scholar 

  12. Verard L., Allain P., Travere J.M. (1997) Fully automatic identification of AC and PC landmarks on brain MRI using scene analysis. IEEE transactions on medical imaging, Vol. 16, No. 5.

    Google Scholar 

  13. M. Arigovindan, M. Sühling, P. Hunziker, and M. Unser. Variational image reconstruction from arbitrarily spaced samples: A fast multiresolution spline solution. IEEE-TIP, 14(4):450–460, April 2005.

    Google Scholar 

  14. J. Duchon, in Constructive theory of functions of several variables, W. Schempp and K. Zeller, editors. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Springer Verlag, 1976.

    Google Scholar 

  15. J. Kybic, T. Blu, and M. Unser. Generalized sampling: a variational approach, part I: Theory. IEEE Transactions on Signal Processing, 50:1965, 1976, August 2002.

    Article  Google Scholar 

  16. Mathematica 5.2, URL: www.wolfram.com.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bennink, H.E., Korbeeck, J.M., Janssen, B.J., ter Haar Romeny, B.M. (2007). Warping a Neuro-Anatomy Atlas on 3D MRI Data with Radial Basis Functions. In: Ibrahim, F., Osman, N.A.A., Usman, J., Kadri, N.A. (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. IFMBE Proceedings, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68017-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68017-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68016-1

  • Online ISBN: 978-3-540-68017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics