Skip to main content

Fluid Micromixing Technology and Its Applications for Biological and Chemical Processes

  • Conference paper

Part of the book series: IFMBE Proceedings ((IFMBE,volume 15))

Abstract

In recent years, there have been intensive investigations on various microfluidic devices and integrated microfluidic systems, such as lab-on-a-chips (or micro total analysis system— μ-TAS) and microreactors. They have been increasingly applied for the biological and medical processes such as genetic analysis, disease diagnosis, chemical synthesis, etc. One involved problem is to mix fluids at microscopic scales. Due to the reduced feature size, the micro flow is usually viscosity dominant laminar flow, and the fluid mixing is limited to diffusion. However, in many applications, the fluid mixing is of crucial importance. The mixing efficiency may directly affect the performance of the whole system. In this paper, the techniques to enhance fluid micromixing are reviewed. A brief introduction of their applications for various biological and medical processes is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36:381–411

    Article  Google Scholar 

  2. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4:261–286

    Article  CAS  PubMed  Google Scholar 

  3. Verpoorte E, DE Rooij NF (2003) Microfluidics meets MEMS. Proceedings of the IEEE, 91(6):930–953

    Article  CAS  Google Scholar 

  4. Ng JMK, Gitlin I, Stroock AD et al. (2002) Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23: 3461–3473

    Article  CAS  PubMed  Google Scholar 

  5. Ehrfeld W, Hessel V, Löwe H (2000) Microreactor: New technology for modern chemistry. Wiley-VCH, Boston.

    Book  Google Scholar 

  6. Roberge DM, Ducry L, Bieler N et al. (2005) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries?. Chem. Eng. Technol. 28(3):318–323

    Article  CAS  Google Scholar 

  7. Yang Z, Goto H, Matsumoto M et al. (2000) Active micromixer for microfluidic systems using lead-zirconate-titanate (PZT)-generated ultrasonic vibration. Electrophoresis 21:116–119

    Article  CAS  PubMed  Google Scholar 

  8. Liu RH, Lenigk R, Druyor-Sanchez RL et al. (2003) Hybridization enhancement using cavitation microstreaming. Anal. Chem. 75:1911–1917

    Article  CAS  PubMed  Google Scholar 

  9. Moctar AOE, Aubry N, Batton J (2003) Electro-hydrodynamic microfluidic mixer. Lab Chip 3:273–280

    Article  PubMed  Google Scholar 

  10. Bau HH, Zhong JH, Yi MQ (2001) A minute magneto hydrodynamic (MHD) mixer. Sens. Actuators B 79:207–215

    Article  CAS  Google Scholar 

  11. Niu X, Lee YK (2003) Efficient spatial-temporal chaotic mixing in microchannels. J. Micromech. Microeng. 13:454–462

    Article  Google Scholar 

  12. Ehrfeld W, Golbig K, Hessel V et al. (1999) Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind. Eng. Chem. Res. 38:1075–1082

    Article  CAS  Google Scholar 

  13. Schönfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micromixer with uniform ‘chaotic’ mixing’. Lab Chip 4:65–69

    Article  PubMed  Google Scholar 

  14. Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal. Chem. 74:4279–4286

    Article  CAS  PubMed  Google Scholar 

  15. Liu RH, Stremler MA, Sharp KV et al. (2000) Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 9:190–197

    Article  Google Scholar 

  16. Stroock AD, Dertinger, SKW, Ajdari A et al. (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  CAS  PubMed  Google Scholar 

  17. Xia HM, Wan SYM, Shu C, Chew YT (2005) Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds umbers. Lab chip 5:748–755

    Article  CAS  PubMed  Google Scholar 

  18. Lee NY, Yamada M and Seki M (2005) Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification. Anal. Bioanal. Chem. 383:776–782

    Article  CAS  PubMed  Google Scholar 

  19. Lee CY, Lee GB, Fu LM et al. (2004) Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect. J. Micromech. Microeng. 4:1390–1398

    Article  Google Scholar 

  20. Lee CY, Lee GB, Lin JL, et al. (2005) Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification. J. Micromech. Microeng. 15:1215–1223

    Article  CAS  Google Scholar 

  21. Liu RH, Yang J, Lenigk R et al. (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification and DNA microarray detection. Anal. Chem. 76:1824–1831

    Article  CAS  PubMed  Google Scholar 

  22. Liau A, Karnik R, Majumdar A et al. (2005) Mixing crowded biological solution in milliseconds. Anal. Chem. 77:7618–7625

    Article  CAS  PubMed  Google Scholar 

  23. He B, Burke BJ, Zhang X et al. (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal. Chem. 73:1942–1947

    Article  CAS  PubMed  Google Scholar 

  24. Burke BJ and Regnier RE (2003) Stopped-flow enzyme assays on a chip using a microfabricated mixer. Anal. Chem. 75:1786–1791

    Article  CAS  PubMed  Google Scholar 

  25. Nagaki A, Togai M, Suga S et al. (2005) Control of extremely fast competitive consecutive reactions using micromixing. Selective friedel-crafts aminoalkylation. J. Am. Chem. Soc. 127:11666–11675

    Article  CAS  PubMed  Google Scholar 

  26. Hessel V, Hofmann C, Löwe H et al. (2004) Selectivity gains and energy saving for the industrial phenyl boronic acid process using micromixer/tubular reactor. Org. Proc. Res. Dev. 8:511–523

    Article  CAS  Google Scholar 

  27. Pennemann H, Watts P, Haswell SJ et al. (2004) Benchmarking of microreactor applications. Org. Proc. Res. Dev. 8:422–439

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chew, Y.T., Xia, H.M., Shu, C. (2007). Fluid Micromixing Technology and Its Applications for Biological and Chemical Processes. In: Ibrahim, F., Osman, N.A.A., Usman, J., Kadri, N.A. (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. IFMBE Proceedings, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68017-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68017-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68016-1

  • Online ISBN: 978-3-540-68017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics