Skip to main content

Effect of Stress Relaxation on Layer Thickness of Articular Cartilage due to Dynamic Loadings

  • Conference paper
3rd Kuala Lumpur International Conference on Biomedical Engineering 2006

Part of the book series: IFMBE Proceedings ((IFMBE,volume 15))

Abstract

Articular cartilage is the bearing material of diarthrodial joints as hydrated soft material such as knee, hip, shoulder, and etc. Then articular cartilage has exceptional lubricating properties and low coefficient of friction that greatly assist its function in synovial joints. Some studies of cartilage lubrication have hypothesized that pressurization of the interstitial fluid may contribute predominantly to reducing the friction coefficient at the contact interface of articular layers. In this paper, we present the response of interstitial fluid pressurization within hydrated soft material of cartilage, which accounts for the cartilage defects. For the computation model, we have chosen an axisymmetric model with two uniformly thick cartilage layers and solved by using finite element method. This model demonstrates that a simultaneous prediction of compression experiments of articular cartilage were under stress relaxation and dynamic loading. For the experimental results, we found that the increased fluid concentration of the tissue’s solution can be achieved the minimum friction coefficient. Furthermore, it is observed that the friction coefficient does not remain constant under various loads or fluid concentration and correlation analyses that the equilibrium value depends in part on the compressive strain in the cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ateshian G.A., Wang H. and Lai W.M. (1998) The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J. Tribol. 120: 241–251.

    Article  Google Scholar 

  2. Basser P.J., Schneidermann R., Bank, R.A., Wachtel E. and Maroudas A. (1998) Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 15(351): 207–219.

    Article  Google Scholar 

  3. Donzelli P.S. and Spilker R.L. (1998) A contact finite element formulation for biological soft hydrated tissues. Comp. in Meth. in Appl. Mech. Eng. 153: 63–79.

    Article  Google Scholar 

  4. Farguhar T., Dawson P.R. and Torzilli P.A. (1990) A microstructural model for the anisotropic drained stiffness of articular cartilage. J. Biomech. Eng. 112: 414–425.

    Article  Google Scholar 

  5. Fortin M., Soulhat J., Shirazi-Adl A., Hunziker E.B. and Buschmann M.D. (2000) Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibri-reinforced biphasic model. J. Biomech. Eng. 122: 189–195.

    Article  CAS  PubMed  Google Scholar 

  6. Hale J.E., Rudert M.J. and Brown T.D. (1993) Indentation assessment of biphasic mechanical property deficits in size-dependent osteochondral defect repair. J. Biomech. 26: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  7. Holmes, M.H. and Mow V.C. (1990) The nonlinear characteristics of soft eels and hydrated connective tissues in ultrafiltration. J. Biomech. 23: 1145–1156.

    Article  CAS  PubMed  Google Scholar 

  8. Huyghe J.M. and Janssen J.D. (1997) Quadriphasic mechanics of swelling incompressible porous media. Inst. J. Eng. Sci. 35: 793–802.

    Article  Google Scholar 

  9. Kim Y.J., Bonassar L.J. and Grodzinsky A.J. (1995) The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28: 1055–1066.

    Article  CAS  PubMed  Google Scholar 

  10. Mow V.C., Kuei S.C., Lai W.M. and Armstrong C.G.(1980) Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 102: 73–84.

    Article  CAS  PubMed  Google Scholar 

  11. Narmoneva D.A., Wang J.Y. and Setton L.A. (1999) Nonuniform swelling-induced residual strains in articular cartilage. J. Biomech. 32: 401–408.

    Article  CAS  PubMed  Google Scholar 

  12. Newberry W.N., Zukosky D.K. and Haut R.C. (1997) Sunfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage. J. Ortho. Res. 15: 450–455.

    Article  CAS  Google Scholar 

  13. Soltz M.A. and Ateshian G.A. (2000) Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28: 150–159.

    Article  CAS  PubMed  Google Scholar 

  14. Suh J.K. and Bai S. (1997) Biphasic poroviscoelastic behavior of articular cartilage in creep indentation test. Trans. Ann. Meet.-Orthop. Res. Soc. 22: 823.

    Google Scholar 

  15. Thompson R. and Oegema T., Lewis J. and Wallace L. (1991) Osteoarthritic changes after acute transarticular load. J. Bone and Joint Surg. 73A: 990–1001.

    Article  Google Scholar 

  16. Woo, S., L.-Y. Simon, B.R., Kuei, S.C. and Akeson W.H. (1980) Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Eng. 102: 85–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Punantapong, B., Fagan, M.J. (2007). Effect of Stress Relaxation on Layer Thickness of Articular Cartilage due to Dynamic Loadings. In: Ibrahim, F., Osman, N.A.A., Usman, J., Kadri, N.A. (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. IFMBE Proceedings, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68017-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68017-8_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68016-1

  • Online ISBN: 978-3-540-68017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics