Skip to main content

The effect of sample preparation and calcination temperature on the production of hydroxyapatite from bovine bone powders

  • Conference paper
3rd Kuala Lumpur International Conference on Biomedical Engineering 2006

Part of the book series: IFMBE Proceedings ((IFMBE,volume 15))

Abstract

The production of hydroxyapatite (HA) from bovine bones was studied in this paper. Bovine hydroxyapatite (BHA) was produced from bovine bone powders by calcination without compaction. The powders were calcined at temperatures ranging from 700–1100°C. It was discovered that sample preparation has some influence on the calcination behavior of the bovine bone powders. XRD results confirmed that HA has been successfully produced but traces of α-TCP and β-TCP were also found. The Ca/P ratios of the BHA powders produced from the process have values greater than 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yildrim O, Aksakal B, Celik H, Vangolu Y, Okur A (2005). An investigation of the effects of hydroxyapatite coatings on fixation strength of cortical screws. Medical Engineering & Physics 27: 221–228.

    Article  Google Scholar 

  2. Jun Y-K, Kim W, Kweon O-K, Hong S-H (2003). The fabrication and biomedical evaluation of alumina reinforced calcium phosphate porous implants. Biomaterials 24: 3731–3739.

    Article  CAS  PubMed  Google Scholar 

  3. Toque J, Hamdi M, Ide-Ektessabi A (2006) A review on hydroxyapatite coating using magnetron sputtering, ICMM Proc. Vol. 1, 1st International Conference & 7th AUN/SEED-Net Fieldwise Seminar on Manufacturing and Material Processing, Kuala Lumpur, Malaysia, pp 603–608.

    Google Scholar 

  4. Kothapalli C, Wei M, Vasiliev A, Shaw M (2004). Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Materialia 52: 5655–5663.

    Article  CAS  Google Scholar 

  5. Narasaraju T and Phebe D (1996). Some physico-chemical aspects of hydroxylapatite. J Mat Sci 31: 1–21.

    Article  CAS  Google Scholar 

  6. Breme J, Zhou Y, Groh L (1995). Development of a titanium alloy suitable for an optimized coating with hydroxyapatite. Biomaterials 16: 239–244.

    Article  CAS  PubMed  Google Scholar 

  7. Herliansyah M, Hamdi M, Ide-Ektessabi A, Wildan M (2006). Fabrication of hydroxyapatite bone graft for implant application: a literature study, ICMM Proc. Vol. 1, 1st International Conference & 7th AUN/SEED-Net Fieldwise Seminar on Manufacturing and Material Processing, Kuala Lumpur, Malaysia, pp 559–564.

    Google Scholar 

  8. Roy D, Linnehan S (1977). Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247: 2012–2014.

    Google Scholar 

  9. Lee S and Oh S (2003). Synthesis of biocompatible calcium phosphate powders by using egg shell. Key Eng Mats 240–242: 35–38.

    Google Scholar 

  10. Huffman E and Keil R (2003). Determination of trace organic carbon and nitrogen in the presence of carbonated in anorganic bovine bone graft materials. Microchemical Journal 74: 249–256.

    Article  CAS  Google Scholar 

  11. Muralithran G, Ramesh S (2000). The effects of sintering temperature on the properties of hydroxyapatite. Ceram Int 26: 221–230.

    Article  CAS  Google Scholar 

  12. Tampieri A, Celotti G, Szontagh F, Landi E (1997). Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity. J Mat Sci: Mat Med 8: 29–37.

    CAS  Google Scholar 

  13. Rao W and Boehm R (1974). A study of sintered apatites. J Dent Res 53: 1351–1354.

    Article  CAS  PubMed  Google Scholar 

  14. Ooi C.Y (2005). Fabrication of calcium phosphate bioceramics by using bovine bone. Masters Thesis, University of Malaya, Kuala Lumpur Malaysia.

    Google Scholar 

  15. Kalita S, Bhardwaj A, Bhatt A (2006). Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mat Eng C (In Press, Corrected Proof).

    Google Scholar 

  16. Trojani C, Boukhechba F et al (2006). Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 27: 3256–3264.

    Article  CAS  PubMed  Google Scholar 

  17. Nihouannen D, Guehennec L et al (2006). Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials 27: 2716–2722.

    Article  PubMed  Google Scholar 

  18. Santos E, Farina M, Soares G (2006). Specific proliferation rates of human osteoblasts on calcium phosphate surfaces with variable concentrations of α-TCP. Mat Sci & Eng C (In Press, Corrected Proof).

    Google Scholar 

  19. Goyenvalle E, Aguado E et al (2006). Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating. Biomaterials 27:1119–1128.

    Article  CAS  PubMed  Google Scholar 

  20. Curran J, Gallagher J, Hunt J (2005). The inflammatory potential of biphasic calcium phosphate granules in osteoblast/macrophage coculture. Biomaterials 26: 5313–5320.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Kim K-H, Ong J (2005). A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials 26: 327–337.

    Article  CAS  PubMed  Google Scholar 

  22. Dijk K (1997). RF magnetron sputter deposition and characterization of Ca5(PO4)3OH-coatings. Doctoral Disseration, Katholieke Universiteit Nijmegen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toque, J.A., Herliansyah, M.K., Hamdi, M., Ide-Ektessabi, A., Wildan, M.W. (2007). The effect of sample preparation and calcination temperature on the production of hydroxyapatite from bovine bone powders. In: Ibrahim, F., Osman, N.A.A., Usman, J., Kadri, N.A. (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. IFMBE Proceedings, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68017-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68017-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68016-1

  • Online ISBN: 978-3-540-68017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics