Skip to main content

Optical nonlinearities in semiconductor optical amplifier and electro-absorption modulator: their applications to all-optical regeneration

  • Chapter
Ultrahigh-Speed Optical Transmission Technology

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 3))

  • 1048 Accesses

Abstract

Semiconductors have large optical nonlinearity with response speed in the several tens of picosecond range, making them ideal use as all-optical regenerators and wavelength converters. We theoretically and experimentally investigated optical nonlinearities induced by carrier dynamics both in forward biased semiconductor waveguide (SOA) and in reverse biased semiconductor waveguide (EAM). We made a detailed theoretical study of carrier dynamics in semiconductor waveguides by using the newly developed time-dependent transfer matrix method. To confirm the simulation results, we propose utilizing a polarization discriminating delayed interferometer (PD-DI) configuration as a simple technique for measuring optical nonlinearities such as cross gain modulation (XGM), cross absorption modulation (XAM), and cross phase modulation (XPM). In the first part of the paper, we reviewed SOA-based regenerators. As expected from the simulation results, we confirmed that injection of the transparent assist light was very effective in reducing of the SOA gain recovery time of down to a few tens of picoseconds. We further demonstrated 40 Gbit/s regeneration using an SOA-one-arm MZI (so-called UNI) configuration. The superior regeneration capability of two-stage UNI was successfully confirmed by a recirculating loop experiment up to 30,000 km with 150 regenerations. In the latter part of the paper, we reviewed all-optical regenerators using EAM. A bit-synchronized rf-driven XAM 3R regenerator consisting of only one EAM for both gating and timing correction was demonstrated at 20 Gbit/s. An EAM in conjunction with delayed interferometer configuration, which utilizes XPM as well as XAM in the EAM, has structurral simplicity and fast regeneration operability up to 100 Gbit/s. The fast response of EAM allows the optical regeneration with a small pattern word effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Manning, A.D. Ellis, A.J. Pustie, and K.J. Blow, Semiconductor laser amplifier for ultrafast all-optical signal processing, J. Opt. Soc. Am. B, 14, 3204 (1997).

    Article  ADS  Google Scholar 

  2. M. Bachmann, P. Doussiere, J.U. Emery, R. N’Go, F. Pommereau, L. Goldstein, G. Soulage, and A. Jourdan, Polarization-insensitive clamped-gain SOA with integrated spot-size convertor and DBR gratings for WDM applications at 1.55 m wavelengh, Electron. Lett., 32, 2076–2077 (1996).

    Article  Google Scholar 

  3. R.J. Manning and D.A.O. Davies, Three-wavelength device for all-optical signal processing, Opt. Lett., 19, 889–891 (1996).

    Article  ADS  Google Scholar 

  4. M. Usami, M. Tsurusawa, and Y. Matsushima, Mechanism for reducing recovery time of optical nonlinearity in semiconductor laser amplifier, Appl. Phys. Lett., 72, 2657–2659 (1998).

    Article  ADS  Google Scholar 

  5. M. Tsurusawa, M. Usami, and Y. Matsushima, Demonstration of optical noise reduction using nonlinear absorption in semiconductor laser amplifier IEEE J. Selected Top. Quantum. Electron., 5, 861 (1999).

    Article  Google Scholar 

  6. A. Dupertuis, J.L. Pleumeekers, T.P. Hessler, P.E. Selbmann, B. Deveaud, B. Dagens, and J.Y. Emery, Extremely Fast High-Gain and Low-Current SOA by Optical Speed-Up at Transparency, IEEE Photon. Tech. Lett., 12, 1453–1455 (2000).

    Article  ADS  Google Scholar 

  7. J.L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A.G. Dentai, S. Shunk, J. Leuthold, and C.H. Joyner, Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength, IEEE Photon. Tech. Lett., 14, 12–14 (2002).

    Article  ADS  Google Scholar 

  8. T. Durhuus, B. Mikkelsen, and K.E. Stubkjaer, Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion, J. Lightwave Technol., 10, 1056–1065 (1992).

    Article  ADS  Google Scholar 

  9. P.J. Annetts, M. Asghari, and I.H. White, The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion in MQW semiconductor optical amplifiers, IEEE J. Select. Topics Quantum Electron., 3, 320–329 (1997).

    Article  Google Scholar 

  10. M. Asghari, I.H. White, and R.V. Penty, Wavelength conversion using semiconductor optical amplifiers, J. Lightwave Technol., 15, 1181–1190 (1997).

    Article  ADS  Google Scholar 

  11. M.G. Davis and R.F. O’Dowd, A Transfer Matrix Method Based Large-Signal Dynamic Model for Mutilelectrode DFB Lasers, IEEE J. Quantum Electron., 30, 2458–2466 (1994).

    Article  ADS  Google Scholar 

  12. H. Lee, H. Yoon, Y. Kim, and J. Heong, Theoretical Study of Frequency Chirping and Exinction Ratio of Wavelength-Converted Optical Signals by XGM and XPM Using SOA, IEEE J. Quantum Electron., 35, 1213–1219 (1999).

    Article  ADS  Google Scholar 

  13. G. Björk and O. Nilsson, A new exact and efficient numerical matrix theory of complicated laser structures: Properties of asymmetric phase-shifted DFB lasers, J. Lightwave Technol., LT-5, 140–146 (1987).

    Article  ADS  Google Scholar 

  14. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Danielsen, and K.E. Stubkjaer, All-optical wavelength conversion by semiconductor optical amplifiers, J. Lightwave Technol., 14, 942–954 (1996).

    Article  ADS  Google Scholar 

  15. F. Girardin, G. Guekos, and A. Houbavlis, Gain recovery of bulk semiconductor optical amplifiers, IEEE Photon. Technol. Lett., 10, 784–786 (1998).

    Article  ADS  Google Scholar 

  16. M. Usami, R. Inohara, M. Tsurusawa, and K. Nishimura, Experimental analysys of cross gain modulation and cross phase modulation in SOA with assist light injection, Proc. IEEE LEOS Summer Topical Meetings, Mont Tremblant, Canada, paper TuKl, (2002)

    Google Scholar 

  17. R. Inohara, M. Tsurusawa, K. Nishimura, and M. Usami, Experimental Analysis of Cross Phase Modulation and Cross Gain Modulation in SOA Injecting CW Assist Light, IEEE Photon. Technol. Lett., 15, 1192–1194 (2003).

    Article  ADS  Google Scholar 

  18. Y. Ueno, S. Nakamura, K. Tajima and S. Kitamura, 3.8 THz Wavelength Conversion of Picosecond Pulses Using a Semiconductor Delayed-Interference Signal-Wavelength Converter (DISC), IEEE Photon. Tech. Lett., 10, 346–348 (1998).

    Article  ADS  Google Scholar 

  19. M. Tsurusawa, K. Nishimura, and M. Usami, First demonstration of pattern effect reduction in 40 Gbps semiconductor optical amplifier based all-optical switch utilizing transparent CW assist light, Electron. Lett. Jpn. J. Appl. Phys., 41, 1199–1202 (2002).

    Article  ADS  Google Scholar 

  20. M. Tsurusawa, R. Inohara, K. Nishimura, and M. Usami, 80 Gbit/s wavelength conversion using SOA-based all-optical polarization discriminated switch, Proc. OECC2002, Chiba Japan, 1lc2–3, 466–467, (2002)

    Google Scholar 

  21. Y. Ueno, S. Nakamura, and K. Tajima, Penalty-Free Error-Free All-Optical Data Pulse Regeneration at 84 Gb/s by Using a Symmetric-Mach-Zehnder-Type Semiconductor Regenerator, Photon. Tech. Lett., 13, 469–471 (2001).

    Article  ADS  Google Scholar 

  22. S. Nakamura, Y. Ueno, and K. Tajima, 168-Gb/s All-Optical Wavelength Conversion with a Symmetric-Mach-Zehnder-Type Switch, Photon. Tech. Lett., 13, 1091–1093 (2001).

    Article  ADS  Google Scholar 

  23. B. Lavigne, E. Balmefrezol, P. Brindel, B. Dagens, L. Pierre, P. Pecci, R. Brenot, and O. Leclerc, Operation margins of 40 Gbit/s SOA-MZI used in differential scheme for optical 3R regeneration Proc. European Conference on Optical Communications ECOC2002, paper 7.3.5, 2002.

    Google Scholar 

  24. J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C. A. Burrus, 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration, Electron. Lett. 36, 1129–1130 (2000).

    Article  Google Scholar 

  25. K. Tajima, S. Nakamura, and Y. Sugimoto, Ultrafast polarization-discriminating Mach-Zehnder all optical switch, Appl. Phys. Lett., 67, 3709–3711 (1995).

    Article  ADS  Google Scholar 

  26. K.L. Hall and K.A. Rauschenbach, 100-Gbit/s bitwise logic, Optics Lett, 23, 1271–1273 (1998).

    Article  ADS  Google Scholar 

  27. A.E. Kelly, I.D. Phillips, R.J. Manning, A.D. Ellis, D. Nesset, D.G. Moodie, and R. Kashyap, 80 Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer, Electron. Lett., 35, 1477–1478 (1999).

    Article  Google Scholar 

  28. H.J. Thiele, A.D. Ellis, and I.D. Phillips, Recirculating loop demonstration of 40Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer, Electron. Lett., 35, 230–231 (1999).

    Article  Google Scholar 

  29. M. Tsurusawa, K. Nishimura, and M. Usami, Novel scheme for 40 Gbps SOA-based all-optical switch utilizing transparent CW assist light, Proc. Indium Phosphide and Related Materials IPRM2001, paper WP-12, 174, 2001.

    Google Scholar 

  30. J. Leuthold, M. Kauer, and M. Duelk, Power Equalization and Signal Regeneration with Delay Interferometer All-optical Wavelength Converters, Proc. European Conference on Optical Communications ECOC2002, paper 7.3.4, 2002.

    Google Scholar 

  31. M. Tsurusawa, K. Nishimura, R. Inohara, and M. Usami, Distinct regeneration capability of 40 Gbit/s signal impaired with amplitude noise and timing jitter using SOA-based all-optical polarization discriminated switch, Proc. Optical Fiber Communications OFC2002, paper TuN4, 2002.

    Google Scholar 

  32. R. Inohara, K. Nishimura, M. Tsurusawa, M. Usami, and S. Akiba, 40 Gbit/s transmission with all-optical 3R regeneration using two-stage SOA-based polarization discriminated switch with assist light injection, ICEIC, 2004.

    Google Scholar 

  33. N.S. Bergano, F.W. Kerfoot, and C.R. Davidson, Margin Measurements in Optical Amplifier Systems, IEEE Photon. Technol. Lett., 5, 304–306 (1993).

    Article  ADS  Google Scholar 

  34. R. Hess, M. Caraccua-Gross, W. Vogt, E. Gamper, PA. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, All-optical demultiplexing of 80 to 10 Gb/s signals with monolothic integrated high-performasnce Mach-Zehnder interferometer, IEEE Photon. Technol. Lett., 10, 165–167 (1998).

    Article  ADS  Google Scholar 

  35. M. Tsurusawa, K. Nishimura, and M. Usami, First demonstration of simultaneous demultiplexing from 40 Gbit/s into two channels of 20 Gbit/s by SOA-based all-optical polarization switch, Electron Lett., 37, 1398–1399 (2001).

    Article  Google Scholar 

  36. M. Tsurusawa, K. Nishimura, and M. Usami, First demonstration of simultaneous demultiplexing from 80Gb/s to 2 × 40 Gb/s by SOA-based all-optical polarization switch, Proc. European Conference on Optical Communications ECOC2001, Th.F-1-1, 500–501, 2001.

    Google Scholar 

  37. K. Nishimura, R. Inohara, M. Tsurusawa, and M. Usami, Delayed-Interferometric Wavelength Converter Using Electroabsorption Modulator with Optimized Bandgap Wavelength, Proc. European Conference on Optical Communications ECOC 2002, Paper 2.3.7, Copenhagen, Denmark, 2002.

    Google Scholar 

  38. A. Ougazzaden, C.W. Lentz, T.G.B. Mason, K.G. Glogovsky, C.L. Raynolds, G.J. Przybylek, R.E. Leibenguth, T.L. Kercher, J.W. Boardman, M.T. Rader, J.M. Geary, F.S. Walters, L.J. Peticolas, J.M. Freund, S.N.G. Chu, A. Sirenko, R.J. Jurchenko, M.S. Hybertsen, L.J.P. Ketelsen, and G. Raybon, 40 Gb/s tandem electro-absorption modulator, Proc. Optical Fiber Communications OFC2001, Anaheim, PD-14, 2001.

    Google Scholar 

  39. H. Takeuchi, Proc. Indium Phosphide and Related Materials IPRM2001, Nara, WA3-1, 2001.

    Google Scholar 

  40. R. Lewen, S. Irmscher, U. Westergren, and L. Thylen, Ultra high-speed segmented traveling-wave electroabsorption modulators, Proc. Optical Fiber Communications OFC2003, Georgia, PD38, 2003.

    Google Scholar 

  41. H. Fukano, M. Tamura, T. Yamanaka, H. Nakajima, Y. Akage, Y. Kondo, and T. Saitoh, Low Driving-Voltage (1.1 Vpp) Electroabsorption Modulators Operating at 40 Gbit/s, Proc. International Conference on Indium Phosphide and Related Materials IPRM2004, Paper ThA1-2, 573–576, Kagoshima, Japan, 2004.

    Google Scholar 

  42. N. Edagawa, M. Suzuki, and S. Yamamoto, Novel wavelength converter using an electroabsorption modulator, IEICE Trans. Electron., E81-C, 1251–1257 (1998).

    Google Scholar 

  43. N. Edagawa and M. Suzuki, Novel all optical limiter using electroabsorption modulators, Proc. Optical Fiber Communicaitons OFC2000, ThP1, 2000.

    Google Scholar 

  44. T. Otani, T. Miyazaki, and S. Yamamoto, Optical 3R Regenerator using wavelength converters based on electroabsorption modulator for all-optical network applications, IEEE Photon. Technol. Lett., 12, 431–433 (2000).

    Article  ADS  Google Scholar 

  45. Nishimura, R. Inohara, M. Tsurusawa, and M. Usami, Novel All-Optical 3R Regenerator Using Cross-Absorption Modulation in rf-Driven Electroabsorption Waveguide, Proc. European Conference on Optical Communications ECOC 2002, Paper 2.3.7, Copenhagen, Denmark, 2002.

    Google Scholar 

  46. K. Nishimura, M. Tsurusawa, and M. Usami, First demonstration of 40 Gbps wavelength conversion with no pattern effect utilizing cross-phase modulationon in an electroabsorption waveguide, Jpn. J. Appl. Phys., 41, 1178–1181 (2002).

    Article  ADS  Google Scholar 

  47. K. Nishimura, R. Inohara and M. Usami, 100 Gbit/s wavelength conversion using MQW-EAM with blueshifted absorption edge, Proc. Optical Fiber Communications OFC 2004, Los Angels, Paper FD2, 2004.

    Google Scholar 

  48. K. Morito, R. Sahara; K. Sato, Y. Kotaki, and H. Soda, High power modulator integrated DFB laser incorporating strain-compensated MQW and graded SCH modulator for 10 Gbit/s transmission, Electron. Lett. 31, 975–976 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Usami, M., Nishimura, K. (2005). Optical nonlinearities in semiconductor optical amplifier and electro-absorption modulator: their applications to all-optical regeneration. In: Weber, HG., Nakazawa, M. (eds) Ultrahigh-Speed Optical Transmission Technology. Optical and Fiber Communications Reports, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68005-5_8

Download citation

Publish with us

Policies and ethics