Skip to main content

Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics

  • Chapter
Ultrahigh-Speed Optical Transmission Technology

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 3))

Abstract

Ultrashort optical pulse sources in the 1.5-µm region are becoming increasingly important in terms of realizing ultrahigh-speed optical transmission and signal processing at optical nodes. This paper provides a detailed description of several types of mode-locked erbium-doped fiber laser, which are capable of generating picosecond-femtosecond optical pulses in the 1.55-µm region. In terms of ultrashort pulse generation at a low repetition rate (∼100 MHz), passively mode-locked fiber lasers enable us to produce pulses of approximately 100 fs. With regard to high repetition rate pulse generation at 10–40 GHz, harmonically mode-locked fiber lasers can produce picosecond pulses. This paper also describes the generation of a femtosecond pulse train at a repetition rate of 10–40 GHz by compressing the output pulses from harmonically mode-locked fiber lasers with dispersion-decreasing fibers. Finally, a new Cs optical atomic clock at a frequency of 9.1926 GHz is reported that uses a re-generatively mode-locked fiber laser as an opto-electronic oscillator instead of a quartz oscillator. The repetition rate stability reaches as high as 10−12−10−13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.N. Duling III, “Subpicosecond all-fibre erbium laser” Electron. Lett., 27, 544–545 (1991).

    Article  Google Scholar 

  2. M. Nakazawa, E. Yoshida, and Y. Kimura, “Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 µm,” Electron. Lett., 29, 63–64 (1993).

    Article  Google Scholar 

  3. M.E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett., 15, 752–754 (1990).

    Article  ADS  Google Scholar 

  4. V.J. Matsas, T.P. Newson, D.J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett., 28, 1391–1393 (1992).

    Article  Google Scholar 

  5. K. Tamura, H.A. Haus, and E.R Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett., 28, 2226–2228 (1992).

    Article  ADS  Google Scholar 

  6. K. Tamura, E.P. Ippen, and H.A. Haus, “Pulse dynamics in stretched pulse fiber lasers,” Appl. Phys. Lett., 67, 158–160 (1995).

    Article  ADS  Google Scholar 

  7. H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE, J. Quantum Electron., 31, 591–598 (1995).

    Article  ADS  Google Scholar 

  8. A. Takada and H. Miyazawa, “30 GHz picosecond pulse generation from actively mode-locked erbium-doped fibre laser,” Electron. Lett., 26, 216–217 (1990).

    Article  Google Scholar 

  9. H. Takara, S. Kawanishi, and M. Saruwatari, “20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Er-doped fibre ring laser,” Electron. Lett., 29, 1149–1150 (1993).

    Article  Google Scholar 

  10. G.R. Huggett, “Mode-locking of CW lasers by regenerative RF feedback,” Appl. Phys. Lett., 13, 186–187 (1968).

    Article  ADS  Google Scholar 

  11. M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarisation-maintaining erbium fibre laser,” Electron. Lett., 30, 1603–1604 (1994).

    Article  Google Scholar 

  12. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed longdistance TDM and WDM soliton transmission technologies,” IEEE, J. Select. Topics Quantum Electron., 6, 363–396 (2000).

    Article  Google Scholar 

  13. Ultrafast lasers, edited by M.E. Fermann, A. Galvanauskas, and G. Sucha, Ch. 13 (Marcel Dekker, 2003).

    Google Scholar 

  14. M. Nakazawa, T. Yamamoto, and K.R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third-and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett., 36, 2027–2029 (2000).

    Article  Google Scholar 

  15. M. Nakazawa, E. Yoshida, T. Sugawa and Y. Kimura, “Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fiber laser with nonlinear polarisation rotation,” Electron. Lett., 29, 1327–1328 (1993).

    Article  Google Scholar 

  16. E. Yoshida, Y. Kimura and M. Nakazawa, “Femtosecond erbium-doped fiber laser with nonlinear polarization rotation and its soliton compression,” Jpn. J. Appl. Phys., 33, 5779–5783 (1994).

    Article  ADS  Google Scholar 

  17. N.J. Smith, F.M. Fox, N.J. Doran, K.J. Blow, and I. Bennion, “Enhanced power solitons in optical fibres with periodic dispersion management,” Electron. Lett., 32, 54–55 (1996).

    Article  Google Scholar 

  18. M. Nakazawa and H. Kubota, “Optical soliton communication in a positively and negatively dispersion-allocated optical fibre transmission line,” Electron. Lett., 31, 216–217 (1995).

    Article  Google Scholar 

  19. M. Suzuki, I. Morita, S. Yamamoto, N. Edagawa, H. Taga, and S. Akiba, “Timing jitter reduction by periodic dispersion compensation in soliton transmission,” OFC’95, PDP 20, San Diego, March (1995).

    Google Scholar 

  20. H. Ohta, N. Banjo, N. Yamada, S. Nogiwa, and Y. Yanagisawa, “Measuring eye diagram of 320 Gbit/s optical signal by optical sampling using passively modelocked fibre laser,” Electron. Lett., 37, 1541–1542 (2001).

    Article  Google Scholar 

  21. M. Nakazawa, E. Yoshida, E. Yamada, and Kimura, “A repetition-rate stabilized and tunable, regeneratively mode-locked fibre laser using an offset locking technique,” Jpn. J. Appl. Phys., 35, L691–694 (1996).

    Article  ADS  Google Scholar 

  22. X. Shan, D. Cleland, and A. Ellis, “Stabilising Er fibre soliton laser with pulse phase locking,” Electron. Lett., 28, 182–184 (1992).

    Article  Google Scholar 

  23. H. Takara, S. Kawanishi, and M. Saruwatari, “Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component,” Electron. Lett., 31, 292–293 (1995).

    Article  Google Scholar 

  24. M. Nakazawa, E. Yoshida and K.R. Tamura, “Ideal phase-locked-loop (PLL) operation of a 10 GHz erbium-doped fibre laser using regenerative modelocking as an optical voltage controlled oscillator” Electron. Lett., 33, 1318–1319 (1997).

    Article  Google Scholar 

  25. X. Shan and D.M. Spirit, “Novel method to suppress noise in harmonically mode-locked erbium fibre laser,” Electron. Lett., 29, 979–981 (1993).

    Article  Google Scholar 

  26. C.R. Doerr, H.A. Haus, E.P. Ippen, M. Shirasaki, and K. Tamura, “Additive-pulse limiting,” Opt. Lett., 19, 31–33 (1994).

    Article  ADS  Google Scholar 

  27. M. Nakazawa, K. Tamura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering,” Electron. Lett., 32, 461–463 (1996).

    Article  Google Scholar 

  28. K.J. Blow, N.J. Doran, and D. Wood, “Generation and stabilization of short soliton pulses in the amplified nonlinear Schrödinger equation,” J. Opt. Soc. Am. B, 5, 381–390 (1988).

    Article  ADS  Google Scholar 

  29. D. Breuer, H.J. Ehrke, F. Küppers, R. Ludwig, K. Petermann, H.G. Weber, and K. Weich, “Unrepeatered 40-Gb/s RZ single-channel transmission at 1.55 µm Using various fiber types,” IEEE, Photon. Technol. Lett., 10, 822–824 (1998).

    Article  ADS  Google Scholar 

  30. K. Suzuki, H. Kubota, A. Sahara, and M. Nakazawa, “40 Gbit/s single channel optical soliton transmission over 70,000 km using in-line synchronous modulation and optical filtering,” Electron. Lett., 34, 98–100 (1998).

    Article  Google Scholar 

  31. T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Proc. Ultrafast Electronics and Optoelectronics, UEO, pp. 166–168 (1997).

    Google Scholar 

  32. E. Yoshida and M. Nakazawa, “Measurement of the timing jitter and pulse energy fluctuation of a PLL regeneratively mode-locked fiber laser,” IEEE, Photon. Technol. Lett., 11, 548–550 (1999).

    Article  ADS  Google Scholar 

  33. D. Von der Linde, “Characterization of the noise in continuously operating mode-locked laser,” Appl. Phys. B, 39, 201–217 (1986).

    Article  ADS  Google Scholar 

  34. Y. Ishida and K. Naganuma, “Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser,” Opt. Lett., 21, 51–53 (1996).

    Article  ADS  Google Scholar 

  35. M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett., 12, 1613–1615 (2000).

    Article  ADS  Google Scholar 

  36. A._E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986)

    Google Scholar 

  37. M. Nakazawa and E. Yoshida, “Direct generation of a 750 fs, 10 GHz pulse train from a regeneratively mode-locked fibre laser with multiple harmonic modulation,” Electron. Lett., 32, 1291–1293 (1996).

    Article  Google Scholar 

  38. H.A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

    Google Scholar 

  39. S.V. Chernikov, D.J. Richardson, E.M. Dianov, D.N. Payne, “Picosecond soliton pulse compressor based on dispersion decreasing fibre,” Electron. Lett., 28, 1842–1844 (1992).

    Article  Google Scholar 

  40. S.V. Chernikov and P.V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion”, J. Opt. Soc. Am. B, 8, 1633–1641 (1991).

    Article  ADS  Google Scholar 

  41. M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 µm using a dispersion-decreasing, erbium-doped active soliton compressor,” Electron. Lett., 30, 2038–2040 (1994).

    Article  Google Scholar 

  42. K. Mori, H. Takara, S. Kawakami, M. Saruwatari, and T. Morioka, “Flatly broadened su-percontinuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile,” Electron. Lett., 33, 1806–1808 (1997).

    Article  Google Scholar 

  43. K.R. Tamura and M. Nakazawa, “54-fs, 10 GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber compressor,” Opt. Lett., 26, 762–764 (2001).

    Article  ADS  Google Scholar 

  44. M. Nakazawa and K. Suzuki, “Cesium optical atomic clock: an optical pulse tells the time,” Opt. Lett., 26, 635–637 (2001).

    Article  ADS  Google Scholar 

  45. N.F. Ramsey, Molecular Beams (Oxford University Press, England, 1956).

    Google Scholar 

  46. D.W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, 54, 221–230 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Nakazawa, M. (2005). Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics. In: Weber, HG., Nakazawa, M. (eds) Ultrahigh-Speed Optical Transmission Technology. Optical and Fiber Communications Reports, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68005-5_3

Download citation

Publish with us

Policies and ethics