Skip to main content

New optical device technologies for ultrafast OTDM systems

  • Chapter
Ultrahigh-Speed Optical Transmission Technology

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 3))

Abstract

Optoelectronic devices handling high bit-rate signals of picosecond or sub-picosecond pulse repetitions are necessary for the OTDM or OTDM/WDM-mixed systems. The bit-rate is 1st or 2nd order higher than the operation speed of conventional devices. To meet the higher speed requirement, we have to develop ultrafast optoelectronic device technologies in new device principles and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Lee, Appl. Phys. Lett., 73, 2715 (1998).

    Article  ADS  Google Scholar 

  2. S. Wakabayashi, A. Baba, and H. Moriya, OFC2003, MF27, 1, 30 (2003).

    Google Scholar 

  3. K. Akiyama, N. Tomita, T. Nishimura, Y. Nomura, and T. Isu, 10th Intern. Workshop on Femtosecond Technology, WD-2, 41 (2003).

    Google Scholar 

  4. K. Ogawa and M.D. Pelusi, Opt. Comm., 198, 83 (2001).

    Article  ADS  Google Scholar 

  5. S. Arahira, Y. Matsui, and Y. Ogawa, IEEE J. Quantum Electron., 32, 1211 (1996).

    Article  ADS  Google Scholar 

  6. S. Arahira and Y. Ogawa, Electron. Lett., 31, 808 (1995).

    Article  ADS  Google Scholar 

  7. Y. K. Chen and M. C. Wu, IEEE J. Quantum Electron., 28, 2176 (1992).

    Article  ADS  Google Scholar 

  8. S. Arahira and Y. Ogawa, IEEE Photon. Technol. Lett., 8, 191 (1996).

    Article  ADS  Google Scholar 

  9. X. Wang, H. Yokoyama, and T. Shimizu, IEEE Photon. Technol. Lett., 8, 617 (1996).

    Article  ADS  Google Scholar 

  10. S. Arahira, Y. Katoh, D. Kunimatsu, and Y. Ogawa, IEICE Trans. Electron., E83-C, 966 (2000).

    Google Scholar 

  11. K. Tajima: Jpn. J. Appl. Phys., 32, L1746 (1993).

    Article  ADS  Google Scholar 

  12. S. Nakamura, K. Tajima, and Y. Sugimoto, Appl. Phys. Lett., 65, 283 (1994).

    Article  ADS  Google Scholar 

  13. K. Tajima, S. Nakamura, and Y. Sugimoto, Appl. Phys. Lett., 67, 3709 (1995).

    Article  ADS  Google Scholar 

  14. Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, IEEE Photonics Technol. Lett., 10, 346 (1998).

    Article  ADS  Google Scholar 

  15. K. Tajima, S. Nakamura, Y. Ueno, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, IEE Electron. Lett., 35, 2030 (1999).

    Article  Google Scholar 

  16. S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, IEEE Photon. Technol. Lett., 12, 425 (2000).

    Article  ADS  Google Scholar 

  17. R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P. A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule,: IEEE Photon. Technol. Lett., 10, 165 (1998).

    Article  ADS  Google Scholar 

  18. S. Nakamura, Y. Ueno, and K. Tajima, Appl. Phys. Lett., 78, 3929 (2001).

    Article  ADS  Google Scholar 

  19. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, J. App. Phys., 91, 992 (2002).

    Article  Google Scholar 

  20. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, Appl. Phys. Lett., 79, 4286 (2001).

    Article  ADS  Google Scholar 

  21. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, J. Appl. Phys., 91, 3477 (2002).

    Article  ADS  Google Scholar 

  22. K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, Y. Sugimoto, N. Ikeda, Y. Tanaka and K. Asakawa: accepted for Jpn. J. Appl. Phys.

    Google Scholar 

  23. Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, and K. Ishida, Appl. Phys. Lett., 83, 3236 (2003).

    Article  ADS  Google Scholar 

  24. H. Nakamura, S. Nishikawa, S. Kohmoto and K. Asakawa, Proceedings of LEOS2001, San Diego, Wu2 (2001).

    Google Scholar 

  25. Y. Sugimoto, Y. Tanaka, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, to be published in the Proceedings of PECS-V, Kyoto, 2004.

    Google Scholar 

  26. K. Inoue, N. Kawai, Y. Sugimoto, N. Carlsson, N. Ikeda, and K. Asakawa, Phys. Rev. B, 65, 121308 (2002).

    Article  ADS  Google Scholar 

  27. Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Tanaka, K. Asakawa, K. Inoue, and S. Johnson, accepted for Electron. Lett.

    Google Scholar 

  28. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, submitted to Opt. Express.

    Google Scholar 

  29. K. Kanamoto, H. Nakamura, Y. Nakamura, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, H. Ishikawa and K. Asakawa, 2003 IEEE LEOS Annual Meeting Conference Proceedings, 2, 561 (2993).

    Article  Google Scholar 

  30. Y Ueno, S. Nakamura, and K. Tajima, IEEE Photon. Technol. Lett., 13, 469 (2001).

    Article  ADS  Google Scholar 

  31. S. Nakamura, Y. Ueno, and K. Tajima, IEEE Photon. Technol. Lett., 13, 1091 (2001).

    Article  ADS  Google Scholar 

  32. S. Noda, T. Yamamoto, M. Ohya, Y. Muramoto, and A. Sasaki, IEEE J. Quantum Electron., 29, 1640 (1993).

    Article  ADS  Google Scholar 

  33. N. Suzuki, and N. Iizuka, Jpn. J. Appl. Phys., 36, Pt.2, L1006 (1997).

    Article  ADS  Google Scholar 

  34. N. Iizuka, K. Kaneko, N. Suzuki, T. Asano, S. Noda, and O. Wada, Appl. Phys. Lett., 77, 648 (2000).

    Article  ADS  Google Scholar 

  35. N. Iizuka, K. Kaneko, and N. Suzuki, Appl. Phys. Lett., 81, 1803 (2002).

    Article  ADS  Google Scholar 

  36. C. Gmachl, H. M. Ng, and Y. Cho, Appl. Phys. Lett., 79, 1590 (2001).

    Article  ADS  Google Scholar 

  37. K. Kishino, A. Kikuchi, H. Kanazawa, and T. Tachibana, Appl. Phys. Lett., 81, 1234 (2002).

    Article  ADS  Google Scholar 

  38. T. Mozume, N. Georgiev, T. Simoyama, A. V. Gopal, and H. Yoshida, 14th Indium Phosphide and Related Materials Conf. Stockholm, 2002, Post Deadline Paper.

    Google Scholar 

  39. T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, A. V. Gopal., and H. Ishikawa, IEEE Photonic Technol. Lett., 15, 1363 (2003).

    Article  ADS  Google Scholar 

  40. H. Yoshida, T. Mozume, A. Neogi, and O. Wada, Electron. Lett., 35, 1103 (1999).

    Article  Google Scholar 

  41. R. Akimoto, Y. Kinpara, K. Akita, F. Sasaki, and S. Kobayashi, Appl. Phys. Lett., 78, 580 (2001).

    Article  ADS  Google Scholar 

  42. R. Akimoto, K. Akita, F. Sasaki, and T. Hazama, Appl. Phys. Lett., 81, 2998 (2002).

    Article  ADS  Google Scholar 

  43. K. Ridley, Phys. Rev. B, 39, 5282 (1989)

    Article  ADS  Google Scholar 

  44. S. Kobayashi and F. Sasaki, J. Lumin. 58, 113 (1994).

    Article  Google Scholar 

  45. K. Minoshima, M. Taiji, K. Misawa, and T. Kobayashi, Chem. Phys. Lett. 218, 67 (1994).

    Article  ADS  Google Scholar 

  46. M. Furuki, M. Tian, Y. Sato, L. S. Pu, S. Tatsuura, and O. Wada, Appl. Pys. Lett. 77, 472 (2000).

    Article  ADS  Google Scholar 

  47. F. Salin, P. Georeges, G. Roger, and A. Brun, Appl. Opt. 26, 4528 (1987).

    Article  ADS  Google Scholar 

  48. D. J. Kane and R. Trebino, Opt. Lett. 18, 823 (1993).

    Article  ADS  Google Scholar 

  49. S. Tatsuura, M. Tian, M. Furuki, Y. Sato, L. S. Pu, and O. Wada, Jpn. J. Appl. Phys. 39, part 1, 4782 (2000).

    Article  ADS  Google Scholar 

  50. M. Furuki, M. Tian, Y. Sato, L. S. Pu, H. Kawashima, S. Tastuura, and O. Wada, Appl. Phys. Lett. 78, 2634 (2001).

    Article  ADS  Google Scholar 

  51. M. Tian, S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, and L. S. Pu, J. Am. Chem. Soc. 125, 348 (2003).

    Article  Google Scholar 

  52. Y. Sato, M. Furuki, M. Tian, L. S. Pu, and S. Tatsuura, Appl. Phys. Lett. 80, 2254 (2002).

    Article  ADS  Google Scholar 

  53. H. Nakajima and R. Fery, Appl. Phys. Lett., 47, 769 (1985).

    Article  ADS  Google Scholar 

  54. S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, Appl. Phys. Lett., 58, 1458 (1991).

    Article  ADS  Google Scholar 

  55. R. Hui, S. Benedetto, and I. Montrosset, J. Lightwave Technol., 11, 2026 (1993).

    Article  ADS  Google Scholar 

  56. H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, Electron. Lett., 31, 2108 (1995).

    Article  Google Scholar 

  57. H. Kuwatsuka, T. Akiyama, B. E. Little, T. Simoyama, and H. Ishikawa, Tech. Digest of 26th European Conference on Optical Communication (ECOC 2000), Vol.3, 65, 2000, Munich.

    Google Scholar 

  58. K. Kikuchi, M. Kakui, C-E Zah, and T-P Lee, IEEE Journal of Quantum Electron., 28, 151 (1992).

    Article  ADS  Google Scholar 

  59. G. P. Agrawal and N. Andes Olsson, IEEE Journal of Quantum Electron., 25, 2297 (1989).

    Article  ADS  Google Scholar 

  60. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, K, Otsubo, and H. Ebe, APOC 02, Materials and Devices for Optical and Wireless Communications, Shanghai, in Proceedings of SPIE Vol. 4905, (2002), p. 259.

    ADS  Google Scholar 

  61. T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, IEEE Photon. Tech. Lett., 14, 1133 (2002).

    Article  ADS  Google Scholar 

  62. M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett., 36, 2027 (2000).

    Article  Google Scholar 

  63. C. M. DePriest, T. Yilmaz, A. Braun, J. Abeles, and P. J. Delfyett, Jr., IEEE J. Quantum Electron., 38, 380 (2002).

    Article  ADS  Google Scholar 

  64. A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett., 14, 684 (2002).

    Article  ADS  Google Scholar 

  65. M. Shirane, Y. Hashimoto, H. Yamada, and H. Yokoyama, IEEE Photon. Technol. Lett., 12, 1537 (2000).

    Article  ADS  Google Scholar 

  66. M. Jinno, IEEE J. Quantum Electron., 30, 2842 (1994).

    Article  ADS  Google Scholar 

  67. D. von der Linde, Appl. Phys. B, 39, 201 (1986).

    Article  ADS  Google Scholar 

  68. H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron., 29, 983 (1993).

    Article  ADS  Google Scholar 

  69. H. Tsuchida, Opt. Lett., 23, 286 (1998).

    Article  ADS  Google Scholar 

  70. H. Tsuchida, Opt. Lett., 24, 1434 (1999).

    Article  ADS  Google Scholar 

  71. H. Tsuchida, IEEE Photon. Technol. Lett., 14, 535 (2002).

    Article  Google Scholar 

  72. H. Tsuchida, Opt. Lett., 27, 2040 (2002).

    Article  ADS  Google Scholar 

  73. S. Arahira, Y. Katoh, and Y. Ogawa, Electron. Lett., 36, 454 (2000).

    Article  Google Scholar 

  74. H. Tsuchida, IEEE J. Sell. Top. Quantum Electron., 9, 535 (2003).

    Google Scholar 

  75. S. Arahira, Y. Katoh, D. Kunimatsu, and Y. Ogawa, IEICE Trans. Electron., 83-C, 966 (2000).

    Google Scholar 

  76. A. Suzuki, X. Wang, T. Hasegawa, Y. Ogawa, S. Arahira, K. Tajima, and S. Nakamura, ECOC 2003, Mo3.6.1, 1, 44 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Sakurai, T., Kobayashi, N. (2005). New optical device technologies for ultrafast OTDM systems. In: Weber, HG., Nakazawa, M. (eds) Ultrahigh-Speed Optical Transmission Technology. Optical and Fiber Communications Reports, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68005-5_16

Download citation

Publish with us

Policies and ethics