Skip to main content

Fiber Bragg gratings for dispersion compensation in optical communication systems

  • Chapter
Ultrahigh-Speed Optical Transmission Technology

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 3))

Abstract

This paper presents an overview of fiber Bragg gratings (FBGs) fabrication principles and applications with emphasis on the chirped FBG used for dispersion compensation in high-speed optical communication systems. We discuss the range of FBG parameters enabled by current fabrication methods, as well as the relation between the accuracy of FBG parameters and the performance of FBG-based dispersion compensators. We describe the theory of the group delay ripple (GDR) generated by apodized chirped fiber gratings using the analogy between noisy gratings and superstructure Bragg gratings. This analysis predicts the fundamental cutoff of the high frequency spatial noise of grating parameters in excellent agreement with the experimental data. We review the iterative GDR correction technique, which further improves the FBG quality and potentially enables consistent fabrication of FBG-based dispersion compensators and tunable dispersion compensators with unprecedented performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Grüner-Nielsen and B. Edvold, “Status and future promises for dispersion compensating fibers,” ECOC, paper 6.1.1 (2002).

    Google Scholar 

  2. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett., 12, 847–849 (1987).

    Article  ADS  Google Scholar 

  3. R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).

    Google Scholar 

  4. B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems”, J. Lightwave Technol., 18, 1418–1432 (2000).

    Article  ADS  Google Scholar 

  5. S.A. Hamilton, B.S. Robinson, T.E. Murphy, S.J. Savage, and E.P. Ippen, “100 Gb/s Optical Time-Division Multiplexed Networks”, J. Lightwave Technol., 20, 2086–2100 (2000).

    Article  ADS  Google Scholar 

  6. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett., 62, 1035–1037 (1993).

    Article  ADS  Google Scholar 

  7. T. Kreis, Holographic interferometry: principles and methods (John Wiley & Sons, Inc., 1996).

    Google Scholar 

  8. L.F. Mollenauer and W.J. Tomlinson, “Piecewise interferometric generation of precision gratings,” Appl. Optics, 3, 555–557 (1977).

    Article  ADS  Google Scholar 

  9. B. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres” Electr. Lett., 30, 1620–1622 (1994).

    Article  Google Scholar 

  10. M. Ibsen, B.J. Eggleton, M.G. Sceats, and F. Quellette, “Broadly tunable DBR fibre laser using sampled fibre Bragg gratings,” Electr. Lett., 31, 37–38 (1995).

    Article  Google Scholar 

  11. W.H. Loh, F.Q. Zhou, and J.J. Pan, “Sampled fiber grating based-dispersion slope compensator” IEEE Photon.Technol. Lett., 11, 1280–1282 (1999).

    Article  ADS  Google Scholar 

  12. H. Ishii, Y. Tohmori, T. Tamamrua, and Y. Yoshikuni, “Super structure grating (SSG) lasers for broadly tunable DBR lasers,” IEEE Photon. Technol. Lett., 4, 393–395 (1993).

    Article  ADS  Google Scholar 

  13. A.V. Buryak and D.Y. Stepanov, “Novel multi-channel grating devices,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Washington, DC: OSA, 2001), vol. 61, paper BThB3.

    Google Scholar 

  14. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, “Dammann Fiber Bragg Gratings and Phase-Only Sampling for High Channel Counts,” IEEE Photon. Technol. Lett., 14, 1309–1311 (2002).

    Article  ADS  Google Scholar 

  15. M.J. Cole, W.H. Loh, R.I. Laming, M.N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with a uniform phase mask,” Electron. Lett., 31, 1483–1485 (1995).

    Article  Google Scholar 

  16. R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” in Photosensitivity and quadratic nonlinearity in glass waveguides: Fundamentals and applications, 22, (OSA, Washington D.C., 1995).

    Google Scholar 

  17. R. Kashyap, H.-G. Froehlich, A. Swanton, and D.J. Armes, “1.3 m long superstep-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 1807–1809 (1996).

    Article  Google Scholar 

  18. M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, “Dispersion compensating fibre Bragg gratings”, in Active and Passive Optical Components for WDM Communication, Proceedings of SPIE, 4532, pp. 540–551, 2001.

    Google Scholar 

  19. K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas, and R.I. Laming, IEEE Photon. Technol. Lett., 10, 1476–1478 (1998).

    Article  ADS  Google Scholar 

  20. C. Scheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proc. ECOC 1999, pp. 1410–1411.

    Google Scholar 

  21. M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, “Dispersion compensating fibre Bragg gratings”, in Active and Passive Optical Components for WDM Communication, Proceedings of SPIE, Vol. 4532, pp. 540–551, 2001.

    Google Scholar 

  22. F. Ouellette, “The effect of profile noise on the spectral response of fiber gratings” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Paper BMG13-2, Williamsburg, 1997.

    Google Scholar 

  23. R. Feced and M.N. Zervas, “Effect of random phase and amplitude errors in optical fiber gratings”, J. Lightwave Technol., 18, 90–101 (2000).

    Article  ADS  Google Scholar 

  24. R. Feced, J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, and H.F.M. Priddle, “Impact of random phase errors on the performance of fiber grating dispersion compensators”, Opcal Fiber Communication Conference (OFC), 2001, Anheim, CA, Paper WDD89, 2001.

    Google Scholar 

  25. M. Sumetsky, B.J. Eggleton, and CM. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings”, Opt. Express, 10, 332–340 (2002).

    ADS  Google Scholar 

  26. L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings”, Phys. Rev. E, 48, 4758–4767 (1993).

    Article  ADS  Google Scholar 

  27. N.G.R. Broderick and C.M. de Sterke, “Theory of grating superstructures”, Phys. Rev. E, 55, 3634–3646 (1997).

    Article  ADS  Google Scholar 

  28. I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, and R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Select. Topics Quant. Electron., 5, 1312–1324 (1999)

    Article  Google Scholar 

  29. S.J. Mihailov, F. Bilodeau, K.O. Hill, D.C. Johnson, J. Albert, and A.S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt., 39, 3670–3677 (2000).

    Article  ADS  Google Scholar 

  30. T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett., 37, 449–451 (2001).

    Article  Google Scholar 

  31. A.V. Buryak and D. Yu. Stepanov, “Correction of systematic errors in the fabrication of fiber Bragg gratings,” Opt. Lett., 27, 1099–1101 (2002).

    Article  ADS  Google Scholar 

  32. M. Sumetsky, P.I. Reyes, P.S. Westbrook, N.M. Litchinitser, and B.J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777–779 (2003).

    Article  ADS  Google Scholar 

  33. J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A, 19, 2229–2237 (2002).

    Article  ADS  Google Scholar 

  34. M. Sumetsky, N.M. Litchinitser, P.S. Westbrook, P.I. Reyes, B.J. Eggleton, Y. Li, R. Desh-mukh, C. Soccolic, F. Rosca, J. Bennike, F. Liu, and S. Dey, “High performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique,” Electron. Lett., 39, 1196–1198 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Sumetsky, M., Eggleton, B.J. (2005). Fiber Bragg gratings for dispersion compensation in optical communication systems. In: Weber, HG., Nakazawa, M. (eds) Ultrahigh-Speed Optical Transmission Technology. Optical and Fiber Communications Reports, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68005-5_10

Download citation

Publish with us

Policies and ethics