Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Image-guided tumor management is a minimally invasive treatment for localized bone tumors. Compared to other modalities, minimally invasive procedures require fewer resources, less time, recovery, and cost, and often reduced morbidity and mortality. Many percutaneous techniques are available. Some aim to treat pain and consolidate bone, i.e. cementoplasty. Others ablate or reduce the tumor, i.e. chemical and thermal ablation techniques. Bone tumor management generally falls into two categories: curative, and far more frequently, palliative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DA, Rand RW, Roth NH, Dashe AM, Heuser G, Hanley J, Parker M (1968) Cryoablation of the pituitary in the treatment of progressive diabetic retinopathy. Diabetes 17:634–640

    CAS  PubMed  Google Scholar 

  • Allaf ME, Varkarakis IM, Bhayani SB, Inagaki T, Kavoussi LR, Solomon SB (2005) Pain control requirements for percutaneous ablation of renal tumors: cryoablation versus radiofrequency ablation — initial observations. Radiology 237:366–370

    Article  PubMed  Google Scholar 

  • Bageacu S, Kaczmarek D, Lacroix M, Dubois J, Forest J, Porcheron J (2007) Cryosurgery for resectable and unresectable hepatic metastases from colorectal cancer. Eur J Surg Oncol 33:590–596

    Article  CAS  PubMed  Google Scholar 

  • Bahn DK, Lee F, Solomon MH, Gontina H, Klionsky DL, Lee FT Jr (1995) Prostate cancer: US-guided percutaneous cryoablation. Work in progress. Radiology 194:551–556

    CAS  PubMed  Google Scholar 

  • Baust J, Chang Z (1995) Underlying mechanisms of damage and new concepts in cryosurgical instrumentation. International Institute of Refrigeration, Paris, France

    Google Scholar 

  • Baust JG, Gage AA (2004) Progress toward optimization of cryosurgery. Technol Cancer Res Treat 3:95–101

    CAS  PubMed  Google Scholar 

  • Baust JG, Gage AA (2005) The molecular basis of cryosurgery. BJU Int 95:1187–1191

    Article  PubMed  Google Scholar 

  • Beland MD, Dupuy DE, Mayo-Smith WW (2005) Percutaneous cryoablation of symptomatic extraabdominal metastatic disease: preliminary results. AJR Am J Roentgenol 184:926–930

    PubMed  Google Scholar 

  • Belov SV (2004) The technology of high-frequency cold-hot plasma ablation for small invasive electrosurgery. Med Tekh 25–30

    Google Scholar 

  • Bickels J, Kollender Y, Merimsky O, Isaakov J, Petyan-Brand R, Meller I (2004) Closed argon-based cryoablation of bone tumours. J Bone Joint Surg Br 86:714–718

    Article  CAS  PubMed  Google Scholar 

  • Bitsch RG, Rupp R, Bernd L, Ludwig K (2006) Osteoid osteoma in an ex vivo animal model: temperature changes in surrounding soft tissue during CT-guided radiofrequency ablation. Radiology 238:107–112

    Article  PubMed  Google Scholar 

  • Bland KL, Gass J, Klimberg VS (2007) Radiofrequency, cryoablation, and other modalities for breast cancer ablation. Surg Clin North Am 87:539–550

    Article  PubMed  Google Scholar 

  • Buy X, Basile A, Bierry G, Cupelli J, Gangi A (2006) Salineinfused bipolar radiofrequency ablation of high-risk spinal and paraspinal neoplasms. AJR Am J Roentgenol 186:S322–326

    Article  Google Scholar 

  • Callstrom MR, Atwell TD, Charboneau JW, Farrell MA, Goetz MP, Rubin J, Sloan JA, Novotny PJ, Welch TJ, Maus TP, Wong GY, Brown KJ (2006) Painful metastases involving bone: percutaneous image-guided cryoablation — prospective trial interim analysis. Radiology 241:572–580

    Article  PubMed  Google Scholar 

  • Clarke DM, Robilotto AT, Rhee E, VanBuskirk RG, Baust JG, Gage AA, Baust JM (2007) Cryoablation of renal cancer: variables involved in freezing-induced cell death. Technol Cancer Res Treat 6:69–79

    PubMed  Google Scholar 

  • Cooper AJ, Fraser JD, MacIver A (1978) Host responses to cryoablation of normal kidney and liver tissue. Br J Exp Pathol 59:97–104

    CAS  PubMed  Google Scholar 

  • Cooper IS (1964) Cryobiology as viewed by the surgeon. Cryobiology 51:44–51

    Article  CAS  PubMed  Google Scholar 

  • De La Taille A, Benson MC, Bagiella E, Burchardt M, Shabsigh A, Olsson CA, Katz AE (2000) Cryoablation for clinically localized prostate cancer using an argon-based system: complication rates and biochemical recurrence. BJU Int 85:281–286

    Article  Google Scholar 

  • Diehn FE, Neeman Z, Hvizda JL, Wood BJ (2003) Remote thermometry to avoid complications in radiofrequency ablation. J Vasc Interv Radiol 14:1569–1576

    PubMed  Google Scholar 

  • Dupuy DE, Hong R, Oliver B, Goldberg SN (2000) Radiofrequency ablation of spinal tumors: temperature distribution in the spinal canal. AJR Am J Roentgenol 175:1263–1266

    CAS  PubMed  Google Scholar 

  • Froese G, Das RM, Dunscombe PB (1991) The sensitivity of the thoracolumbar spinal cord of the mouse to hyperthermia. Radiat Res 125:173–180

    Article  CAS  PubMed  Google Scholar 

  • Gage AA, Baust J (1998) Mechanisms of tissue injury in cryosurgery. Cryobiology 37:171–186

    Article  CAS  PubMed  Google Scholar 

  • Gage AA, Baust JG (2007) Cryosurgery for tumors. J Am Coll Surg 205:342–356

    Article  PubMed  Google Scholar 

  • Gangi A, Kastler BA, Dietemann JL (1994a) Percutaneous vertebroplasty guided by a combination of CT and fl uoroscopy. AJNR Am J Neuroradiol 15:83–86

    CAS  PubMed  Google Scholar 

  • Gangi A, Kastler B, Klinkert A, Dietemann JL (1994b) Injection of alcohol into bone metastases under CT guidance. J Comput Assist Tomogr 18:932–935

    Article  CAS  PubMed  Google Scholar 

  • Gangi A, Dietemann JL, Schultz A, Mortazavi R, Jeung MY, Roy C (1996) Interventional radiologic procedures with CT guidance in cancer pain management. Radiographics 16:1289–1304; discussion 1304-1306

    CAS  PubMed  Google Scholar 

  • Gangi A, Gasser B, De Unamuno S, Fogarrassy E, Fuchs C, Siffert P, Dietemann JL, Roy C (1997a) New trends in interstitial laser photocoagulation of bones. Semin Musculoskelet Radiol 1:331–338

    Article  PubMed  Google Scholar 

  • Gangi A, Dietemann JL, Gasser B, Mortazavi R, Brunner P, Mourou MY, Dosch JC, Durckel J, Marescaux J, Roy C (1997b) Interstitial laser photocoagulation of osteoid osteomas with use of CT guidance. Radiology 203:843–848

    CAS  PubMed  Google Scholar 

  • Gangi A, Guth S, Imbert JP, Marin H, Dietemann JL (2003) Percutaneous vertebroplasty: indications, technique, and results. Radiographics 23:e10

    Google Scholar 

  • Gangi A, Basile A, Buy X, Alizadeh H, Sauer B, Bierry G (2005) Radiofrequency and laser ablation of spinal lesions. Semin Ultrasound CT MR 26:89–97

    Article  CAS  PubMed  Google Scholar 

  • Gangi A, Alizadeh H, Wong L, Buy X, Dietemann JL, Roy C (2007) Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 242:293–301

    Article  PubMed  Google Scholar 

  • Georgy BA, Wong W (2007) Plasma-mediated radiofrequency ablation assisted percutaneous cement injection for treating advanced malignant vertebral compression fractures. AJNR Am J Neuroradiol 28:700–705

    CAS  PubMed  Google Scholar 

  • Hoffmann NE, Bischof JC (2002) The cryobiology of cryosurgical injury. Urology 60:40–49

    Article  PubMed  Google Scholar 

  • Kam AW, Littrup PJ, Walther MM, Hvizda J, Wood BJ (2004) Thermal protection during percutaneous thermal ablation of renal cell carcinoma. J Vasc Interv Radiol 15:753–758

    PubMed  Google Scholar 

  • Korpan N (2001) Basics of cryosurgery. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Laeseke PF, Sampson LA, Brace CL, Winter TC III, Fine JP, Lee FT Jr (2006) Unintended thermal injuries from radiofrequency ablation: protection with 5% dextrose in water. AJR Am J Roentgenol 186:S249–254

    Article  Google Scholar 

  • Lezoche E, Paganini AM, Feliciotti F, Guerrieri M, Lugnani F, Tamburini A (1998) Ultrasound-guided laparoscopic cryoablation of hepatic tumors: preliminary report. World J Surg 22:829–835; discussion 835-836

    Article  CAS  PubMed  Google Scholar 

  • Littrup PJ, Ahmed A, Aoun HD, Noujaim DL, Harb T, Nakat S, Abdallah K, Adam BA, Venkatramanamoorthy R, Sakr W, Pontes JE, Heilbrun LK (2007) CT-guided percutaneous cryotherapy of renal masses. J Vasc Interv Radiol 18:383–392

    Article  PubMed  Google Scholar 

  • Long JP, Faller GT (1999) Percutaneous cryoablation of the kidney in a porcine model. Cryobiology 38:89–93

    Article  CAS  PubMed  Google Scholar 

  • Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272

    Article  CAS  PubMed  Google Scholar 

  • Okuda S, Kuroda K, Kainuma O, Oshio K, Fujiwara H, Kuribayashi S (2004) Accuracy of MR temperature measurement based on chemical shift change for radiofrequency ablation using hook-shaped electrodes. Magn Reson Med Sci 3:95–100

    Article  PubMed  Google Scholar 

  • Patel BG, Parsons CL, Bidair M, Schmidt JD (1996) Cryoablation for carcinoma of the prostate. J Surg Oncol 63:256–264

    Article  CAS  PubMed  Google Scholar 

  • Permpongkosol S, Nielsen ME, Solomon SB (2006) Percutaneous renal cryoablation. Urology 68:19–25

    Article  PubMed  Google Scholar 

  • Rosenthal DI, Springfield DS, Gebhardt MC, Rosenberg AE, Mankin HJ (1995) Osteoid osteoma: percutaneous radiofrequency ablation. Radiology 197:451–454

    CAS  PubMed  Google Scholar 

  • Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229:171–175

    Article  PubMed  Google Scholar 

  • Seifert JK, Morris DL (1999) World survey on the complications of hepatic and prostate cryotherapy. World J Surg 23:109–113; discussion 113-114

    Article  CAS  PubMed  Google Scholar 

  • Seifert JK, France MP, Zhao J, Bolton EJ, Finlay I, Junginger T, Morris DL (2002) Large volume hepatic freezing: association with signifi cant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model. World J Surg 26:1333–1341

    Article  PubMed  Google Scholar 

  • Seror O, Lepetit-Coiffe M, Quesson B, Trillaud H, Moonen CT (2006) Quantitative magnetic resonance temperature mapping for real-time monitoring of radiofrequency ablation of the liver: an ex vivo study. Eur Radiol 16:2265–2274

    Article  PubMed  Google Scholar 

  • Sewell PE, Arriola RM, Robinette L, Cowan BD (2001) Realtime I-MR-imaging — guided cryoablation of uterine fibroids. J Vasc Interv Radiol 12:891–893

    Article  CAS  PubMed  Google Scholar 

  • Theodorescu D (2004) Cancer cryotherapy: evolution and biology. Rev Urol 6(Suppl 4):S9–S19

    PubMed  Google Scholar 

  • Toyota N, Naito A, Kakizawa H, Hieda M, Hirai N, Tachikake T, Kimura T, Fukuda H, Ito K (2005) Radiofrequency ablation therapy combined with cementoplasty for painful bone metastases: initial experience. Cardiovasc Intervent Radiol 28:578–583

    Article  PubMed  Google Scholar 

  • Witt JD, Hall-Craggs MA, Ripley P, Cobb JP, Bown SG (2000) Interstitial laser photocoagulation for the treatment of osteoid osteoma. J Bone Joint Surg Br 82:1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Wood BJ, Ramkaransingh JR, Fojo T, Walther MM, Libutti SK (2002) Percutaneous tumor ablation with radiofrequency. Cancer 94:443–451

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gangi, A., Buy, X. (2009). Percutaneous Bone Tumors Management. In: Gangi, A., Guth, S., Guermazi, A. (eds) Imaging in Percutaneous Musculoskeletal Interventions. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49929-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49929-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22097-8

  • Online ISBN: 978-3-540-49929-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics