Skip to main content

A Byzantine-Fault Tolerant Self-stabilizing Protocol for Distributed Clock Synchronization Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4280))

Abstract

Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lamport, L., Shostak, R., Pease, M.: The Byzantine General Problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  2. Driscoll, K., Hall, B., Sivencronam, H., Zumsteg, P.: Byzantine Fault Tolerance, from Theory to Reality: Computer Safety, Reliability, and Security. In: Anderson, S., Felici, M., Littlewood, B. (eds.) SAFECOMP 2003. LNCS, vol. 2788, pp. 235–248. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults. J. ACM 32(1), 52–78 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dolev, D., Halpern, J.Y., Strong, R.: On the Possibility and Impossibility of Achieving Clock Synchronization. In: Proceedings of the 16th Annual ACM STOC, Washington D.C., pp. 504–511. ACM Press, New York (1984); (Also appear in J. Comput. Syst. Sci.)

    Google Scholar 

  5. Dijkstra, B.W.: Self stabilizing systems in spite of distributed control. Commun. ACM 17, 643–644 (1974)

    Article  MATH  Google Scholar 

  6. Srikanth, T.K., Toueg, S.: Optimal Clock Synchronization. In: Proceedings of the Fourth Annual ACM Symposium on Principles of Distributed Computing, pp. 71–86 (1985)

    Google Scholar 

  7. Welch, J.L., Lynch, N.: A New Fault-Tolerant Algorithm for Clock Synchronization. Information and Computation 77(1), 1–36 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolev, S., Welch, J.L.: Self-Stabilizing Clock Synchronization in the Presence of Byzantine Faults. Journal of the ACM 51(5), 780–799 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolev, D., Halpern, J.Y., Simons, B., Strong, R.: Dynamic Fault-Tolerant Clock Synchronization. J. ACM 42(1) (1995)

    Google Scholar 

  10. Daliot, A., Dolev, D., Parnas, H.: Self-Stabilizing Pulse Synchronization Inspired by Biological Pacemaker Networks. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 32–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Daliot, A., Dolev, D., Parnas, H.: Linear Time Byzantine Self-Stabilizing Clock Synchronization. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 7–19. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Malekpour, M.R., Siminiceanu, R.: Comments on the Byzantine Self-Stabilizing Pulse Synchronization Protocol: Counterexamples. NASA/TM-2006-213951, p. 7 (February 2006)

    Google Scholar 

  13. Kopetz, H.: Real-Time Systems, Design Principles for Distributed Embedded Applications. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  14. Malekpour, M.R.: A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems, NASA/TM-2006-214322, p. 37 (August 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malekpour, M.R. (2006). A Byzantine-Fault Tolerant Self-stabilizing Protocol for Distributed Clock Synchronization Systems. In: Datta, A.K., Gradinariu, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2006. Lecture Notes in Computer Science, vol 4280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49823-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49823-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49018-0

  • Online ISBN: 978-3-540-49823-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics