Skip to main content

Mathematical and Computational Tools for the Stability Analysis of Time-Varying Delay Systems and Applications in Mechanical Engineering

  • Chapter
Applications of Time Delay Systems

Summary

An overview of eigenvalue based tools for the stability analysis of linear periodic systems with delays is presented. It is assumed that both the system matrices and the delays are periodically varying. First the situation is considered where the time-variation of the periodic terms is fast compared to the system’s dynamics. Then averaging techniques are used to relate the stability properties of the time-varying system with these of a time-invariant one, which opens the possibility to use frequency domain tools. As a special characteristic the averaged system exhibits distributed delays if the delays in the original system are time-varying. Both analytic and numerical tools for the stability analysis of the averaged system are discussed. Special attention is paid to the characterization of situations where a variation of a delay has a stabilizing effect. Second, the assumption underlying the averaging approach is dropped. It is described how exact stability information of the original, periodic system can be directly computed. The two approaches are briefly compared with respect to generality, applicability and computational efficiency. Finally the results are illustrated by means of two examples from mechanical engineering. The first example concerns a model of a variable speed rotating cutting tool. Based on the developed theory and using the described computational tools, both a theoretical explanation and a quantitative analysis are provided of the beneficial effect of a variation of the machine speed on enhancing stability properties, which was reported in the literature. The second example concerns the stability analysis of an elastic column, subjected to a periodic force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai Z., Demmel J., Dongarra J., Ruhe A., van der Vorst, H. Eds. (2000) Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Software, Environments, and Tools, vol. 11, SIAM, Philadelphia

    Google Scholar 

  2. Bellen A., Zennaro M. (2003) Numerical methods for delay differential equations. Oxford University Press, London

    MATH  Google Scholar 

  3. Breda D. (2004) Numerical computation of characteristic roots for delay differential equations. PhD thesis, Department of Mathematics and Computer Science, University of Udine

    Google Scholar 

  4. Breda D., Maset S. Vermiglio R. (2004) Computing the characteristic roots for delay differential equations. IMA J. Numerical Analysis 24(1):1–19.

    Article  MATH  MathSciNet  Google Scholar 

  5. Butcher E.A., Ma H., Bueler E., Averina V., Szabo, Z. (2004) Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. International J. Numerical Methods in Engineering 59:895–922

    Article  MATH  MathSciNet  Google Scholar 

  6. Cooke K. L. Grossman Z. (1982) Discrete delay, distributed delay and stability switches. J. Mathematical Analysis and Applications 86:592–627

    Article  MATH  MathSciNet  Google Scholar 

  7. Doedel E.J., Champneys A.R., Fairgrieve T.J., Kuznetsov Y.A., Sandstede B., Wang X.-J. (1998) AUTO97: Continuation and bifurcation software for ordinary differential equations. Technical report, Dept. of Computer Science, Concordia University

    Google Scholar 

  8. Doedel E.J., and Kernévez J.P. (1986) AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Applied Mathematics Report, California Institute of Technology, Pasadena, U.S.A.

    Google Scholar 

  9. Engelborghs K., Luzyanina T., in’t Hout K., Roose, D. (2000) Collocation methods for the computation of periodic solutions of delay differential equations SIAM J. Sci. Comput. 22:1593–1609

    Article  MATH  MathSciNet  Google Scholar 

  10. Engelborghs K., Luzyanina T., Roose D. (2002) Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Transactions on Mathematical Software 28(1):1–21

    Article  MATH  MathSciNet  Google Scholar 

  11. Engelborghs K., Luzyanina T., Samaey G. (2001) DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equation. T.W. Report 330, Department of Computer Science, K.U. Leuven

    Google Scholar 

  12. Engelborghs K. and Roose D. (2002) On stability of LMS methods and characteristic roots of delay differential equations. SIAM J. Numerical Analysis 40(2):629–650

    Article  MATH  MathSciNet  Google Scholar 

  13. Fox L., Parker I. B. (1972) Chebyshev polynomials in numerical analysis. Oxford mathematical handbooks, Oxford University Press, London

    Google Scholar 

  14. Goubet-Bartholoméüs A., Dambrine M., Richard J.-P. (1997) Stability of perturbed systems with time-varying delays. Systems & Control Letters 31:155–163

    Article  MATH  MathSciNet  Google Scholar 

  15. Gu K., Kharitonov V.L., Chen, J. (2003) Stability of time-delay systems. Birkhauser, Boston

    Google Scholar 

  16. Hale J. K., Verduyn Lunel S. M. (1993) Introduction to Functional Differential Equations. Applied Math. Sciences, vol. 99, Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  17. Halmos P. (1966) Measure Theory. The university series in higher mathematics, Van Nostrand Princeton

    Google Scholar 

  18. Insperger T., Stepan B. (2002) Semi-discretization method for delayed systems. International J. for Numerical Methods in Engineering 55(5):3–18

    MathSciNet  Google Scholar 

  19. Jayaram S., Kapoor S.G., DeVor, R.E. (2000) Analytical stability analysis of variable spindle speed machines. J. of Manufacturing and Engineering 122:391–397

    Article  Google Scholar 

  20. Kharitonov, V.L. and Niculescu, S.-I.: On the stability of linear systems with uncertain delay. IEEE Trans. Automat. Contr. 48 (2003) 127–133

    Article  MathSciNet  Google Scholar 

  21. Lehman B., Bentsman J., Verduyn Lunel S., Verriest, E.I. (1994) Vibrational Control of Nonlinear Time Lag Systems with Bounded Delay: Averaging Theory, Stabilizability, and Transient Behavior. IEEE Transactions on Automatic Control 39:898–912

    Article  MATH  MathSciNet  Google Scholar 

  22. Louisell J. (1992) Growth estimates and asymptotic stability for a class of differential-delay equation having time-varying delay. J. Mathematical Analysis and Applications 164:453–479

    Article  MATH  MathSciNet  Google Scholar 

  23. Luzyanina T., Engelborghs K., Roose, D. (2003) Computing stability of differential equations with bounded distributed delays. Numerical Algorithms 34(1):41–66

    Article  MATH  MathSciNet  Google Scholar 

  24. Luzyanina T., Roose, D. (2004) Equations with distributed delays: bifurcation analysis using computational tools for discrete delay equations. Functional Differential Equations 11:87–92

    MATH  MathSciNet  Google Scholar 

  25. Luzyanina T., Roose D., Engelborghs K. (2004) Numerical stability analysis of steady state solutions of integral equations with distributed delays. Applied Numerical Mathematics 50:75–92

    Article  MATH  MathSciNet  Google Scholar 

  26. Michiels W., Engelborghs K., Roose D., Dochain, D. (2002) Sensitivity to in-finitesimal delays in neutral equations. SIAM Journal of Control and Optimization 40(4):1134–1158

    Article  MathSciNet  Google Scholar 

  27. Michiels W., Niculescu S.-I., Moreau, L. (2004) Using delays and time-varying gains to improve the output feedback stabilizability of linear systems: a comparison. IMA Journal of Mathematical Control and Information 21(4):393–418

    Article  MATH  MathSciNet  Google Scholar 

  28. Michiels W., Van Assche V., Niculescu, S.-I. (2005) Stabilization of time-delay systems with a controlled, time-varying delay and applications. IEEE Transactions on Automatic Control 50(4):493–504

    Article  Google Scholar 

  29. Moreau L., Aeyels D. (1999) Trajectory-based global and semi-global stability results. In Modern Applied Mathematics Techniques in Circuits, Systems and Control, N.E. Mastorakis, Ed., pp.71–76, World Scientific and Engineering Society Press 71–76

    Google Scholar 

  30. Moreau L., Aeyels, D. (2000) Practical stability and stabilization. IEEE Transactions on Automatic Control 45(8):1554–1558

    Article  MATH  MathSciNet  Google Scholar 

  31. Moreau L., Michiels W., Aeyels D., Roose D. (2002) Robustness of nonlinear delay equations w.r.t. bounded input perturbations: a trajectory based approach. Math. Control Signals Systems 15(4):316–335

    Article  MATH  MathSciNet  Google Scholar 

  32. Niculescu S.-I. (2001) Delay effects on stability: A robust control approach. LNCIS, vol. 269, Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  33. Niculescu S.-I., Gu K., Abdallah, C.T. (2003) Some remarks on the delay stabilizing effect in SISO systems. In Proc. 2003 American Control Conference, Denver, Colorado

    Google Scholar 

  34. Niculescu S.-I., de Souza C. E., Dion J.-M., Dugard, L. (1998) Robust exponential stability of uncertain systems with time-varying delays. IEEE Transactions on Automatic Control 43:743–748

    Article  MATH  Google Scholar 

  35. Richard J.-P. (2003) Time-delay systems: an overview of recent advances and open problems. Automatica 39(10):1667–1694

    Article  MATH  MathSciNet  Google Scholar 

  36. Roesch O., Roth H., Niculescu S.-I. (2005) Remote coontrol of mechatronic systems over communication networks. In Proc. 2005 IEEE Int. Conf. Mechatronics & Automation, Niagara Falls, Canada

    Google Scholar 

  37. Rudin W. (1966) Real and complex analysis. McGraw Hill, New York

    MATH  Google Scholar 

  38. Sanders J.A., Verhulst F. (1985) Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59, Springer Verlag, Berlin Heidelberg New York

    MATH  Google Scholar 

  39. Sexton J., Stone B. (1978) The stability of machining with continuously varying spindle speed. Ann. CIRP 27:321–326

    Google Scholar 

  40. Sridhar R., Hohn R.E., Long G.W. (1968) A general formultion of the milling process equation. ASME J. Engineering for Industry 90:317–324

    Google Scholar 

  41. Tarbouriech S., Abdallah C.T., Chiasson, J.N. eds. (2005) Advances in Communication Control Networks. LNCIS, vol. 308, Springer Verlag, Berlin Heidelberg New York

    MATH  Google Scholar 

  42. Trefethen L.N. (2000) Spectral methods in Matlab. Software, Environments, and Tools, vol. 10, SIAM, Philadelphia

    Google Scholar 

  43. Van Assche V., Ganguli A., Michiels W. (2004) Practical stability analysis of systems with delay and periodic coefficients. In Proc. 5th IFAC Workshop on Time-Delay Systems, Leuven, Belgium

    Google Scholar 

  44. Verheyden K., Lust, K. (2005) A Newton-Picard collocation method for periodic solutions of delay differential equations. BIT 45:605–625

    Article  MATH  MathSciNet  Google Scholar 

  45. Verheyden K., Lust K., Roose D. (2005) Computation and stability analysis of solutions of periodic delay differential algebraic equations. In Proc. of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, USA

    Google Scholar 

  46. Verheyden K., Luzyanina T., Roose D. (2004) Efficient computation of characteristic roots of delay differential equations using LMS methods. T.W. Report 383, Department of Computer Science, K.U. Leuven

    Google Scholar 

  47. Verheyden K., Roose D. (2004) Efficient numerical stability analysis of delay equations: a spectral method. In Proc. 5th IFAC Workshop on Time-Delay Systems, Leuven, Belgium

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michiels, W., Verheyden, K., Niculescu, SI. (2007). Mathematical and Computational Tools for the Stability Analysis of Time-Varying Delay Systems and Applications in Mechanical Engineering. In: Chiasson, J., Loiseau, J.J. (eds) Applications of Time Delay Systems. Lecture Notes in Control and Information Sciences, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49556-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49556-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49555-0

  • Online ISBN: 978-3-540-49556-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics