Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dieter GE (1976) Mechanical Metallurgy, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  2. Griffith AA (1968) Trans Am Soc Met 61:871–906

    Google Scholar 

  3. Inglis CE (1913) Trans Inst Nav Archit 55(1):219–230

    Google Scholar 

  4. Orowan E (1950) In: Fatigue and Fracture of Metals. Wiley, New York

    Google Scholar 

  5. Irwin GR (1958) Encyclopedia of Physics, IV. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Reed-Hill RE (1973) Physical Metallurgy Principles, 2ndedn. D Van Nostrandm New York

    Google Scholar 

  7. ASTM (2005) E399-05 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. ASTM International, West Conshohocken, PA

    Google Scholar 

  8. Reed-Hill RE (1992) Physical Metallurgy Principles, 3rd edn. PWS, Boston

    Google Scholar 

  9. Dugdale DS (1960) J Mech Phys Solids 8:100

    Article  Google Scholar 

  10. Anderson TL (1995) Fracture Mechanics, 2nd edn. CRC, New York, p 142

    Google Scholar 

  11. Cottrell AH (1958) Trans AIME 212:192

    CAS  Google Scholar 

  12. Zener C (1948) In: Fracturing of Metals. American Society for Metals, Metals Park, Ohio

    Google Scholar 

  13. Stroh AH (1957) Adv Phys 6:418

    Google Scholar 

  14. Bement AL (1972) Rev Roum Phys 17(4):505

    CAS  Google Scholar 

  15. Petch NJ (1957) Fracture. Wiley, New York, p 54

    Google Scholar 

  16. Murty KL (1999) J Nucl Mater 270:115–128

    Article  Google Scholar 

  17. Johnson AA (1962) Phil Mag 7:177

    Article  CAS  Google Scholar 

  18. Mager TR, Hazelton WS (1969) Radiation Damage in Reactor Materials, vol I. IAEA, Vienna, p 317

    Google Scholar 

  19. Steele LE (1975) Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels. IAEA, Vienna

    Google Scholar 

  20. ASTM (2000) E 208-95, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels. ASTM International, West Conshohocken, PA

    Google Scholar 

  21. Odette GR, Lambrozo PM, Wullaert RA (1985) In: Garner FA, Perrin JS (eds) Effects of Irradiation on Materials the 12th International Symposium, ASTM STP 870. American Society for Testing and Materials, Philadelphia, PA, pp 840–850

    Google Scholar 

  22. English CA, Ortner SR, Cage G, Server WL, Rosinski ST (2001) In: Rosinski ST, Grossbeck ML, Allen TR, Kumar AS (eds) Effects of Radiation on Materials the 20th International Symposium, ASTM STP 1405. American Society for Testing and Materials, West Conshohocken, PA, 2001, pp 151–173

    Google Scholar 

  23. Hausild P, Kyta M, Karlik M, Pesck P (2005) JNM 341:184–188

    Article  CAS  Google Scholar 

  24. Odette GR, Lucas GE (1996) J Non Destructive Eval 15:137

    Google Scholar 

  25. Sokolov MA, Nanstad RK, Miller MK (2004) J ASTM Int 1(9):123–137

    Article  Google Scholar 

  26. Lott RG, Rosinski ST, Server WL (2004) J ASTM Int 1(5):300–310

    Article  Google Scholar 

  27. Hahn GT, Rosenfield AR (1966) Acta Metal 14:815

    Article  Google Scholar 

  28. Stoller RE (2004) J ASTM Int 1(4):326–337

    Article  Google Scholar 

  29. Steele LE, Hawthorne JR (1967) ASTM STP-426, Effects of Irradiation on Structural Materials. American Society for Testing and Materials, Philadelphia, PA, p 534

    Google Scholar 

  30. Steele LE, Davies LM, Ingham T, Brumovsky M (1985) Garner FA, Perrin JS (eds) Effects of Irradiation on Materials the 12th International Symposium. American Society for Testing and Materials, Philadelphia, PA, 1985, pp 863–899

    Google Scholar 

  31. Sokolov MA, Chernobaeva AA, Nanstad RK, Nikolaev YA, Korolev YN (2000) In: Hamilton ML, Kumar AS, Rosinski ST, Grossbeck ML (eds) Effects of Radiation on Materials the 19th International Symposium, ASTM STP 1366. American Society for Testing and Materials, West Conshohocken, PA, 2000, pp 415–434

    Google Scholar 

  32. U S Nuclear Regulatory Commission (1998) Regulatory Guide 199, Radiation Embrittlement of Reactor Vessel Materials, Revision 2. US Nuclear Regulatory Commission, Washington, DC, May 1998

    Google Scholar 

  33. Odette GR, Lucas GE (1998) Rad Eff Defects Solid 44:189

    Article  Google Scholar 

  34. Odette GR, Lucas GE (2001) JOM July:18–22

    Google Scholar 

  35. Horsten MG, van Osch EV, Gelles DS, Hamilton ML (2000) In: Hamilton ML, Kumar AS, Rosinski ST, Grossbeck ML (eds) Effects of Radiation on Materials the 19th International Symposium, ASTM STP 1366. American Society for Testing and Materials, West Conshohocken, PA, 2000, pp 579–593

    Google Scholar 

  36. Callister WD (1991) Materials Science and Engineering, an Introduction. Wiley, New York

    Google Scholar 

  37. Laird C (1967) Fatigue Crack Propagation, ASTM STP-415. American Society for Testing and Materials, Philadelphia, PA, 1967, p 131

    Google Scholar 

  38. James LA (1977) Nucl Safety 18(6):791

    CAS  Google Scholar 

  39. Cullen WH, Watson HE, Taylor RE, Loss FJ (1981) J Nucl Mater 96:261

    Article  CAS  Google Scholar 

  40. Lucas GE (1993) J Nucl Mater 206:287–305

    Article  CAS  Google Scholar 

  41. Odette GR, Lucas GE (1992) J Nucl Mater 191–194:50–57

    Article  Google Scholar 

  42. US Nuclear Regulatory Commission (2003) Fracture Toughness and Crack Growth Rates of Irradiated Austenitic Stainless Steels, NUREG/CR-6826. US Nuclear Regulatory Commission, Washington, DC, p 21

    Google Scholar 

  43. Odette GR, Lucas GE (1991) J Nucl Mater 179–181:572

    Article  Google Scholar 

  44. Wolfer WG, Jones RH (1981) J Nucl Mater 103/104:1305–1314

    Article  Google Scholar 

  45. Lloyd G (1982) J Nucl Mater 110:20–27

    Article  CAS  Google Scholar 

  46. Murty KL, Holland FR (1982) Nucl Technol 58:530–537

    CAS  Google Scholar 

  47. Bloom EE (1976) Irradiation strengthening and embrittlement. In: Radiation Damage in Metals. American Society for Metals, Metals Park, OH, pp 295–329

    Google Scholar 

  48. Hull D, Rimmer DE (1959) Phil Mag 4:673

    Article  CAS  Google Scholar 

  49. Nix WD, Yu KS, Wang JS (1983) Metal Trans 14A:563

    Article  Google Scholar 

  50. Cadek J (1988) Creep in Metallic Materials, Materials Science Monographs 48. Elsevier, New York

    Google Scholar 

  51. Cocks ACF, Ashby MF (1982) Prog Int Mat Sci 27:189–244

    Article  CAS  Google Scholar 

  52. Langdon TG, Vastava RB (1982) In: Rhode RW, Swearengen JC (eds) Mechanical Testing for Deformation Model Development, ASTM STP 765. American Society for Testing and Materials, Philadelphia, PA, 1982, p 435

    Google Scholar 

  53. Trinkaus H, Ullmaier H (1994) J Nucl Mater 212–215:303–309

    Article  Google Scholar 

  54. Teirlinck D, Zok F, Embury JD, Ashby MF (1988) Acta Metal 36:1213–1228

    Article  CAS  Google Scholar 

  55. Li M, Zinkle SJ (2007) J Nucl Mater 361(2–3) 192–205

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Fracture and Embrittlement. In: Fundamentals of Radiation Materials Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49472-0_13

Download citation

Publish with us

Policies and ethics