Advertisement

Red-Black Prefetching: An Approximation Algorithm for Parallel Disk Scheduling

  • Mahesh Kallahalla
  • Peter J. Varman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1530)

Abstract

We address the problem of I/O scheduling of read-once reference strings in a multiple-disk parallel I/O system. We present a novel on-line algorithm, Red-Black Prefetching (RBP), for parallel I/O scheduling. In order to perform accurate prefetching RBP uses L-block lookahead. The performance of RBP is analyzed in the standard parallel disk model with D independent disks and a shared I/O buffer of size M. We show that the number of parallel I/Os performed by RBP is within a factot \(\Theta(\max \{\sqrt{MD/L}, D^{1/3}\})\) of the number of I/Os done by the optimal off-line algorithm. This ratio is within a canstant factor of the best possible when L is L=O(MD 1/3).

Keywords

Schedule Algorithm Competitive Ratio Single Disk Parallel Disk Reference String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S., Garg, N., Leonardi, S.: Minimizing Stall Time in Single and Parallel Disk Systems. In: Proc. of Symp. on Theory of Computing (1998)Google Scholar
  2. 2.
    Barve, R.D., Grove, E.F., Vitter, J.S.: Simple Randomized Mergesort on Parallel Disks. Parallel Computing 23(4), 601–631 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Barve, R.D., Kallahalla, M., Varman, P.J., Vitter, J.S.: Competitive Parallel Disk Prefetching and Buffer Management. In: Proc. of ACM Wkshp. on IOPADS, pp. 47–56 (1997)Google Scholar
  4. 4.
    Belady, L.A.: A Study of Replacement Algorithms for a Virtual Storage Computer. IBM Systems Journal 5(2), 78–101 (1966)CrossRefGoogle Scholar
  5. 5.
    Cao, P., Felten, E.W., Karlin, A.R., Li, K.: A Study of Integrated Prefetching and Caching Strategies. In: Proc. of the Joint Int. Conf. on Measurement andModeling of Comp. Sys., pp. 188–197. ACM Press, New York (1995)Google Scholar
  6. 6.
    Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: RAID: High Performance Reliable Secondary Storage. ACM Computing Surveys 26(2), 145–185 (1994)CrossRefGoogle Scholar
  7. 7.
    Kallahalla, M., Varman, P.J.: ASP: Adaptive Online Parallel Disk Scheduling. In: Proc. of DIMACS Wkshp. on Ext. Memory Algorithms and Visualization, DIMACS (1998) (to appear)Google Scholar
  8. 8.
    Kallahalla, M., Varman, P.J.: Improving Parallel-Disk Buffer Management using Randomized Writeback. In: Proc. of Int. Conf. on Parallel Procesing, pp. 270–277 (1998)Google Scholar
  9. 9.
    Kimbrel, T., Karlin, A.R.: Near-Optimal Parallel Prefetching and Caching. In: Proc. of Foundations of Computer Science, pp. 540–549. IEEE, Los Alamitos (1996)Google Scholar
  10. 10.
    Pai, V.S., Schäffer, A.A., Varman, P.J.: Markov Analysis of Multiple-Disk Prefetching Strategies for External Merging. Theoretical Computer Science 128(1–2), 211–239 (1994)Google Scholar
  11. 11.
    Sleator, D.D., Tarjan, R.E.: Amortized Efficiency of List Update and Paging Rules. Communications of the ACM, Vol 28(2), 202–208 (1985)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Varman, P.J., Verma, R.M.: Tight Bounds for Prefetching and Buffer Management Algorithms for Parallel I/O Systems. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Vitter, J.S., Shriver, E.A.M.: Optimal Algorithms for Parallel Memory, I: Two-Level Memories. Algorithmica 12(2–3), 110–147 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Mahesh Kallahalla
    • 1
  • Peter J. Varman
    • 1
  1. 1.Dept. of ECERice UniversityHoustonUSA

Personalised recommendations