Advertisement

Different Types of Monotonicity for Restarting Automata

  • Petr Jančar
  • František Mráz
  • Martin Plátek
  • Jörg Vogel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1530)

Abstract

We consider several classes of rewriting automata with a restart operation and the monotonicity property of computations by such automata. It leads to three natural definitions of (right) monotonicity of automata. Besides the former monotonicity, two new types, namely a-monotonicity and g-monotonicity, for such automata are introduced. We provide a taxonomy of the relevant language classes, and answer the (un)decidability questions concerning these properties.

Keywords

Monotonicity Property State Automaton Input Word Input Alphabet Decidability Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buntrock, G., Otto, F.: Growing Context-Sensitive Languages and Church-Rosser Languages. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 313–324. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)Google Scholar
  3. 3.
    Ehrenfeucht, A., Păun, G., Rozenberg, G.: Contextual Grammars and Formal Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Linear Modeling: Background and Application, vol. 2, pp. 237–293. Springer, Berlin (1997)Google Scholar
  4. 4.
    Kunze, J.: Abhängigkeitsgrammatik. Studia Grammatica XII, Berlin (1975)Google Scholar
  5. 5.
    Mráz, F., Plátek, M., Jančar, P., Vogel, J.: Restarting Automata with Rewriting. In: Jeffery, K. (ed.) SOFSEM 1997. LNCS, vol. 1338, pp. 505–512. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On Monotonicity for Restarting Automata. Accepted to workshop Mathematical Linguistics on MFCS 1998, Brno (1998)Google Scholar
  7. 7.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On Restarting Automata with Rewriting. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 119–136. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Sénizergues, G.: A Characterisation of Deterministic Context-Free Languages by Means of Right-Congruences. Theoretical Computer Science 70, 671–681 (1990)CrossRefGoogle Scholar
  9. 9.
    Sénizergues, G.: The Equivalence Problem for Deterministic Pushdown Automata is Decidable. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 671–681. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Sgall, P., Panevová, J.: Dependency Syntax – a Challenge. Theoretical Linguistics 15(1/2), 73–86 (1988/1989)Google Scholar
  11. 11.
    Marcus, S.: Contextual Grammars and Natural Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Linear Modeling: Background and Application, vol. 2, pp. 215–235. Springer, Berlin (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Petr Jančar
    • 1
  • František Mráz
    • 2
  • Martin Plátek
    • 2
  • Jörg Vogel
    • 3
  1. 1.Dept. of Computer ScienceTechnical University of OstravaOstravaCzech Republic
  2. 2.Department of Computer ScienceCharles UniversityPraha 1Czech Republic
  3. 3.Computer Science InstituteFriedrich Schiller UniversityJenaGermany

Personalised recommendations