Advertisement

Abstract

We revisit the notion of graph complexity introduced by Pudlák, Rödl, and Savický [PRS]. Using their framework, we show that sufficiently strong superlinear monotone lower bounds for the very special class of 2-slice functions would imply superpolynomial lower bounds for some other functions. Given an n-vertex graph G, the corresponding 2-slice function f G on n variables evaluates to zero on inputs with less than two 1’s and evaluates to one on inputs with more than two 1’s. On inputs with exactly two 1’s, f G evaluates to 1 exactly when the pair of variables set to 1 corresponds to an edge in G. Combining our observations with those from [PRS], we can show, for instance, that a lower bound of n 1 + Ω(1) on the (monotone) formula size of an explicit 2-slice function f on n variables would imply a 2Ω(l) lower bound on the formula size of another explicit function g on l variables, where \(l={\it \Theta}(\log n)\).

We consider lower bound questions for depth-3 bipartite graph complexity. We prove some weak lower bounds on this measure using algebraic methods. For instance, our results give a lower bound of Ω((logn/ loglogn)2) for bipartite graphs arising from Hadamard matrices, such as the Paley-type bipartite graphs. A lower bound of n Ω(1) on the depth-3 complexity of an explicit bipartite graph would give superlinear size lower bounds on log-depth boolean circuits for an explicit function. Similarly, a lower bound of \(2^{(\log n)^{\Omega(1)}}\) would give an explicit language outside the class \(\Sigma_{\rm 2}^{cc}\) of the two-party communication complexity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AB.
    Alon, N., Boppana, R.: The Monotone Circuit Complexity of Boolean Functions. Combinatorica 7(1), 1–22 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  2. BFS.
    Babai, L., Frankl, P., Simon, J.: Complexity classes in Communication Complexity Theory. In: 26th IEEE FOCS, pp. 337–347 (1986)Google Scholar
  3. Be.
    Berkowitz, S.: On some Relationships Between Monotone and Nonmonotone Circuit Complexity, Technical Report, University of Toronto (1982)Google Scholar
  4. Bu.
    Bublitz, S.: Decomposition of Graphs and Monotone Formula size of Homogeneous Functions. Acta Informatika 23, 689–696 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  5. Du.
    Dunne, P.: The Complexity of Central Slice Functions. Theoretical Computer Science 44, 247–257 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. Fr.
    Friedman, J.: Constructing O(n log n) size Monotone Formulae for the k-th Elementary Symmetric Polynomial of n Boolean Variables. SIAM jl. Comp. 15(3), 641–654 (1986)zbMATHCrossRefGoogle Scholar
  7. Ha.
    Håstad, J.: Almost Optimal Lower Bounds for Small Depth Circuits. In: Micali, S. (ed.) Advances in Computer Research: Randomness and Computation, vol. 5. JAI Press, Greenwich (1989)Google Scholar
  8. HJP.
    Håstad, J., Jukna, S., Pudlák, P.: Top-Down Lower Bounds for Depth-3 Circuits. In: 34th IEEE FOCS, pp. 124–129Google Scholar
  9. HK.
    Hayes, T., Kutin, S.: Personal communicationGoogle Scholar
  10. NS.
    Nisan, N., Szegedy, M.: On the degree of Boolean Functions as Real Polynomials. In: 24th ACM STOC, pp. 462–467 (1991)Google Scholar
  11. KW.
    Krause, M., Waack, S.: Variation Ranks of Communication Matrices and Lower Bounds for Depth-Two Circuits having Symmetric Gates with Unbounded fan-in. In: 32nd IEEE FOCS, pp. 777–782 (1991)Google Scholar
  12. KaWi.
    Karchmer, M., Wigderson, A.: Monotone Circuits for Connectivity require Sper-Logarithmic Depth. SIAM jl. Disc. Math. 3(2), 255–265 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  13. PRS.
    Pudlák, P., Rödl, V., Savický, P.: Graph Complexity. Acta Informatica 25, 515–535 (1988)zbMATHMathSciNetGoogle Scholar
  14. PR1.
    Pudlák, P., Rödl, V.: A Combinatorial Approach to Complexity. Combinatorica 14, 221–226 (1992)CrossRefGoogle Scholar
  15. PR2.
    Pudlák, P., Rödl, V.: Some Combinatorial-Algebraic Problems from Complexity Theory. Discrete Mathematics 136, 253–279 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. PSZ.
    Paturi, R., Saks, M., Zane, F.: Exponential Lower Bounds on Depth 3 Boolean Circuits. In: 29th ACM STOC (1997)Google Scholar
  17. PPZ.
    Paturi, R., Pudlák, P., Zane, F.: Satisfiability Coding Lemma. In: 38th IEEE FOCS, pp. 566–574 (1997)Google Scholar
  18. Ra1.
    Razborov, A.A.: Applications of MatrixMet hods for the theory of Lower Bounds in Computational Complexity. Combinatorica 10, 81–93 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  19. Ra2.
    Razborov, A.A.: Lower Bounds on the size of Bounded Depth Networks over a Complete Basis with Logical Addition. Mat. Zametki 41(4), 598–607 (1987) (in Russian); English translation in: Math. Notes 41(4), 333–338 (1987)Google Scholar
  20. Ra3.
    Razborov, A.A.: Lower Bounds on the Monotone Complexity of some Boolean Functions. Dokl. Akad. Nauk SSSR 281(4), 798–801 (1985) (in Russian); English translation in: Soviet Math. Dokl. 31, 354–357 (1985)Google Scholar
  21. Ra4.
    Razborov, A.A.: A Lower Bound on the Monotone Network Complexity of the Logical Permanent. Mat. Zametki 37(6), 887–900 (1985) (in Russian); English translation in: Math. Notes 37(6), 485–493 (1985)Google Scholar
  22. RW.
    Raz, R., Wigderson, A.: Monotone Circuits for Matching require Linear Depth. JACM 39(3), 736–744 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  23. RM.
    Raz, R., McKenzie, P.: Separation of the Monotone NC Hierarchy. In: 38th IEEE FOCS, pp. 234–243 (1997)Google Scholar
  24. Sm.
    Smolensky, R.: Algebraic Methods in the theory of Lower Bounds for Boolean Circuit Complexity. In: 19th STOC, pp. 77–82 (1987)Google Scholar
  25. Ta.
    Tardos, É.: The gap between Monotone and Non-monotone Circuit Complexity is Exponential. Combinatorica 8(1), 141–142 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  26. We.
    Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science. Teubner, Stuttgart/wiley, Chichester (1987)Google Scholar
  27. Va.
    Valiant, L.: Graph-Theoretical Methods in Low-level Complexity. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidelberg (1977)Google Scholar
  28. Yao.
    Yao, A.: Some Complexity Questions related to Distributive Computing. In: 11th ACM STOC, pp. 209–213 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Satyanarayana V. Lokam
    • 1
  1. 1.Department of Mathematical and Computer SciencesLoyola University ChicagoChicagoUSA

Personalised recommendations