Advertisement

First-Order-CTL Model Checking

  • Jürgen Bohn
  • Werner Damm
  • Orna Grumberg
  • Hardi Hungar
  • Karen Laster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1530)

Abstract

This work presents a first-order model checking procedure that verifies systems with large or even infinite data spaces with respect to first-order CTL specifications. The procedure relies on a partition of the system variables into control and data. While control values are expanded into BDD-representations, data values enter in form of their properties relevant to the verification task. The algorithm is completely automatic. If the algorithm terminates, it has generated a first-order verification condition on the data space which characterizes the system’s correctness. Termination can be guaranteed for a class that properly includes the data-independent systems, defined in [10].

This work improves [5], where we extended explicit model checking algorithms. Here, both the control part and the first-order conditions are represented by BDDs, providing the full power of symbolic model checking for control aspects of the design.

Keywords

Model Check Product Structure Kripke Structure Computation Tree Logic Boolean Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berezin, S., Biere, A., Clarke, E., Zhu, Y.: Combining symbolic model checking with uninterpreted functions for out-of-order processor verification. Submitted for publicationGoogle Scholar
  2. 2.
    Bernholtz, O., Vardi, M., Wolper, P.: An automata-theoretic approach to branching-time model checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 142–155. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM TOPLAS 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  5. 5.
    Damm, W., Hungar, H., Grumberg, O.: What if model checking must be truly symbolic. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Dingel, J., Filkorn, T.: Model checking for infinite state systems using data abstraction, assumption-commitment style reasoning and theorem proving. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Graf, S.: Verification of a distributed cache memory by using abstractions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 207–219. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Isles, A.J., Hojati, R., Brayton, R.K.: Computing reachability control states of systems modeled with uninterpreted functions and infinite memory. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Sajid, K., Goel, A., Zhou, H., Aziz, A., Barber, S., Singhal, V.: BDD based procedures for the theory of equality with uninterpreted functions. In: Y. Vardi, M. (ed.) CAV 1998. LNCS. vol. 1427. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Wolper, P.: Expressing interesting properties of programs in propositional temporal logic. In: POPL 1986, pp. 184–193 (1986)Google Scholar
  11. 11.
    Xu, Y., Cerny, E., Song, X., Corella, F., Mohamed, O.A.: Model checking for a first-order temporal logic using multiway decision graphs. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jürgen Bohn
    • 1
  • Werner Damm
    • 1
  • Orna Grumberg
    • 2
  • Hardi Hungar
    • 1
  • Karen Laster
    • 2
  1. 1.Universität OldenburgGermany
  2. 2.TechnionIsrael

Personalised recommendations