Advertisement

Approximation Algorithms with Bounded Performance Guarantees for the Clustered Traveling Salesman Problem

  • Nili Guttmann-Beck
  • Refael Hassin
  • Samir Khuller
  • Balaji Raghavachari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1530)

Abstract

Let G=(V,E) be a complete undirected graph with vertex set V, edge set E, and edge weights l(e) satisfying triangle inequality. The vertex set V is partitioned into clustersV 1, ..., V k . The clustered traveling salesman problem (CTSP) is to compute a shortest Hamiltonian cycle (tour) that visits all the vertices, and in which the vertices of each cluster are visited consecutively. Since this problem is a generalization of the traveling salesman problem, it is NP-hard. In this paper, we consider several variants of this basic problem and provide polynomial time approximation algorithms for them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anily, S., Bramel, J., Hertz, A.: A 5/3 -approximation algorithm for the clustered traveling salesman tour and path problems. Manuscript (December 1997)Google Scholar
  2. 2.
    Arkin, E., Hassin, R., Klein, L.: Restricted delivery problems on a network. Networks 29, 205–216 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chisman, J.A.: The clustered traveling salesman problem. Computers & Operations Research 2, 115–119 (1975)CrossRefGoogle Scholar
  4. 4.
    Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University (1976) Google Scholar
  5. 5.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: The rural postman problem. Operations Research 43, 399–414 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Frederickson, G.N.: Approximation algorithms for some postman problems. J. Assoc. Comput. Mach. 26, 538–554 (1979)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hoogeveen, J.A.: Analysis of Christofides’ heuristic: Some paths are more difficult than cycles. Operations Research Letters 10, 291–295 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gendreau, M., Hertz, A., Laporte, G.: The traveling salesman problem with backhauls. Computers and Operations Research 23, 501–508 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gendreau, M., Laporte, G., Hertz, A.: An approximation algorithm for the traveling salesman problem with backhauls. Operations Research 45, 639–641 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jansen, K.: An approximation algorithm for the general routing problem. Information Processing Letters 41, 333–339 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Johnson, D.S., Papadimitriou, C.H.: Performance guarantees for heuristics. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pp. 145–180. Wiley, Chichester (1985)Google Scholar
  13. 13.
    Jongens, K., Volgenant, T.: The symmetric clustered traveling salesman problem. European Journal of Operational Research 19, 68–75 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Reinehart and Winston (1976)zbMATHGoogle Scholar
  15. 15.
    Lokin, F.C.J.: Procedures for traveling salesman problems with additional constraints. European Journal of Operational Research 3, 135–141 (1978)CrossRefGoogle Scholar
  16. 16.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley & Sons, Chichester (1988)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Nili Guttmann-Beck
    • 1
  • Refael Hassin
    • 1
  • Samir Khuller
    • 2
  • Balaji Raghavachari
    • 3
  1. 1.Department of Statistics and Operations ResearchTel-Aviv UniversityTel-AvivIsrael
  2. 2.Department of Computer Science and UMIACSUniversity of MarylandCollege ParkUSA
  3. 3.Department of Computer ScienceThe University of Texas at DallasRichardsonUSA

Personalised recommendations