We use Martingale inequalities to give a simple and uniform analysis of two families of distributed randomised algorithms for edge colouring graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bollabas, B.: Graph Theory: An Introductory Course. Springer, Heidelberg (1980)Google Scholar
  2. 2.
    Dubhashi, D., Grable, D.A., Panconesi, A.: Near optimal distributed edge colouring via the nibble method. Theoretical Computer Science 203, 225–251 (1998); A special issue for ESA 1995, the 3rd European Symposium on AlgorithmsGoogle Scholar
  3. 3.
    Dubhashi, D., Panconesi, A.: Concentration of measure for computer scientists. Draft of a monograph in preparationGoogle Scholar
  4. 4.
    Grable, D., Panconesi, A.: Near optimal distributed edge colouring in O(log log n) rounds. Random Structures and Algorithms 10(3), 385–405 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grable, D., Panconesi, P.: Brooks and Vizing Colurings, SODA 98Google Scholar
  6. 6.
    Luby, M.: Removing randomness in parallel without a processor penalty. J. Computer and Systems Sciences 47(2), 250–286 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Marton, K.: Bounding \({\bar d}\) distance by informational divergence: A method to prove measure concentration. Annals of Probability 24, 857–866 (1996)Google Scholar
  8. 8.
    Marton, K.: On the measure concentration inequality of Talagrand for dependent random variables. Submitted for publication (1998) Google Scholar
  9. 9.
    McDiarmid, C.J.H.: On the method of bounded differences. In: Siemons, J. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Notes Series 141. Cambridge University Press, Cambridge (1989)Google Scholar
  10. 10.
    Molloy, M., Reed, B.: A bound on the strong chromatic index of a graph. J. Comb. Theory (B) 69, 103–109 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the Chernoff–Hoeffding bounds. SIAM J. Computing 26(2), 350–368 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Spencer, J.: Probabilistic methods in combinatorics. In: Proceedings of the International Congress of Mathematicians, Zurich, Birkhauser (1995)Google Scholar
  13. 13.
    Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publ. math. IHES 81(2), 73–205 (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Devdatt P. Dubhashi
    • 1
  1. 1.Department of Computer Science and EnggIndian Institute of Technology, DelhiNew DelhiIndia

Personalised recommendations