Skip to main content

High-Harmonic Gravity Signatures Related to Post-Glacial Rebound

  • Chapter
Dynamic Planet

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 130))

Abstract.

The earth’s shallow layers, up to a depth of about 200 km, can have viscosities that are an order to several orders of magnitude lower than those of surrounding layers. These layers can induce high-harmonic (degree and order 50 – 150) gravity anomalies due to the ice and meltwater redistribution in the last glacial cycle. Uncertainties in ice-load histories will induce gravity and geoid anomaly differences in these high harmonics. The GOCE satellite mission is expected to be able to discern differences between various Late-Pleistocene ice-load histories and is also predicted to be sensitive enough to detect the effects of shallow low-viscosity crustal and asthenosphere zones. For example, our earth relaxation models indicate that GOCE should be sensitive to typical differences between ice-load histories up to harmonic degree 140 for a crustal low-viscosity zone and up to harmonic degree 70 for a low-viscosity zone in the asthenosphere. GRACE is mainly sensitive to differences for the latter. We show that for the limiting case of a lateral homogeneous earth, it is possible to constrain properties of crustal low-viscosity layers in the presence of uncertainties in the ice-load history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Di Donato, G., J.X. Mitrovica, R. Sabadini, and L.L.A. Vermeersen (2000). The influence of a ductile crustal zone on glacial isostatic adjustment; geodetic observables along the U.S. East Coast, Geophys. Res. Lett., 27, pp. 3017–3020.

    Article  Google Scholar 

  • Dziewonski, A.M. and D.L. Anderson (1981). Preliminary Reference Earth Model, Phys. Earth Planet. Inter., 25, pp. 297–356.

    Article  Google Scholar 

  • Farrell, W.E. (1972). Deformation of the earth by surface loads, Rev. Geophys. Space Phys., 10, pp. 761–797.

    Google Scholar 

  • Han, S.-C., C.K. Shum, P. Ditmar, P. Visser, C. van Beelen and E.J.O. Schrama (2006) Aliasing effect of high frequency mass variations on GOCE recovery of the earth’s gravity field, J. Geodyn., 41, pp. 69–76.

    Article  Google Scholar 

  • Heiskanen, W. and H. Moritz (1967). Physical Geodesy, W.H. Freeman and Co., San Francisco, 364 pp.

    Google Scholar 

  • Johnston, P. and K. Lambeck (1999). Postglacial rebound and sea level contributions to changes in the geoid and the earth’s rotation axis, Geophys. J. Int., 136, pp. 537–558.

    Article  Google Scholar 

  • Kendall, R., J.X. Mitrovica and R. Sabadini (2003). Lithospheric thickness inferred from Australian post-glacial sea-level change: The influence of a ductile crustal zone, Geophys. Res. Lett., 30, pp. 1461–1464.

    Article  Google Scholar 

  • Klemann, V. and D. Wolf (1999). Implications of a ductile crustal layer for the deformation caused by the Fennoscandian ice sheet, Geophys. J. Int., 139, pp. 216–226.

    Article  Google Scholar 

  • Lambeck, K., C. Smither and P. Johnston (1998). Sea-level change, glacial rebound and mantle viscosity of northern Europe, Geophys. J. Int., 134, pp. 102–144.

    Article  Google Scholar 

  • Lambeck, K., A. Purcell, P. Johnston, M. Nakada, Y. Yokoyama (2003). Water-load definition in the glaciohydro-isostatic sea-level equation, Quat. Sci. Rev., 22, p. 309–318.

    Article  Google Scholar 

  • Longman, I.M. (1963). A Green’s function for determining the deformation of the earth under surface mass loads, 2. Computations and numerical results, J. Geophys. Res., 68, pp. 485–496.

    Google Scholar 

  • Mikhailov, V., S. Tikhotsky, M. Diament, I. Panet, V. Ballu (2004). Can tectonic processes be recovered from new gravity satellite data?, Earth Planet. Sci. Lett., 228, 10.1016/j.epsl.2004.09.035.

    Google Scholar 

  • Mitrovica, J.X. and G.A. Milne (2003). On post-glacial sea level: I. General theory, Geophys. J. Int., 154, pp. 253–267.

    Article  Google Scholar 

  • Mitrovica, J.X. and W.R. Peltier (1989). Pleistocene deglaciation and the global gravity field, J. Geophys. Res., 94, pp. 13,651–13,671.

    Article  Google Scholar 

  • Peltier, W.R. (1974). The impulse response of a Maxwell earth, Rev. Geophys. Space Phys., 12, pp. 649–669.

    Google Scholar 

  • Pollitz, F.F. (2003). Transient rheology of the uppermost mantle beneath the Mojave Desert, California, Earth Planet. Sci. Lett., 215, pp. 89–104.

    Article  Google Scholar 

  • Ranalli, G. and D. Murphy (1987). Rheological stratification of the lithosphere, Tectonophys., 132, pp. 281–295.

    Article  Google Scholar 

  • Schotman, H.H.A. and L.L.A. Vermeersen (2005). Sensitivity of glacial isostatic adjustment models with shallow low-viscosity earth layers to the ice-load history in relation to the performance of GOCE and GRACE, Earth Planet. Sci. Lett., 236, 10.1016/j.epsl.2005.04.008.

    Google Scholar 

  • Siegert, M.J. and J.A. Dowdeswell (2004). Numerical reconstructions of the Eurasian Ice Sheet and climate during the Late Weichselian, Quat. Sci. Rev., 23, pp. 1273–1283.

    Article  Google Scholar 

  • Simons, M. and B.H. Hager (1997). Localization of the gravity field and the signature of glacial rebound, Nature, 390, pp. 500–504.

    Article  Google Scholar 

  • Stein, S. and M. Wysession (2003). Introduction to Seismology, Earthquakes, and Earth Structure, Blackwell Publishing, Oxford, 498 pp.

    Google Scholar 

  • Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole and F. Wang (2005). GGM02-An improved earth gravity field model from GRACE, J. Geodesy, 10.1007/s00190-005-0480-z.

    Google Scholar 

  • Tushingham, A.M. and W.R. Peltier (1991). ICE3G: A new global model of late Pleistocene deglaciation based upon geophysical predications of postglacial relative sea level change, J. Geophys. Res., 96, pp. 4497–4523.

    Google Scholar 

  • van der Wal, W., H.H.A. Schotman and L.L.A. Vermeersen (2004). Geoid heights due to a crustal low viscosity zone in glacial isostatic adjustment modeling; a sensitivity analysis for GOCE, Geophys. Res. Lett., 31, 10.1029/2003GL019139.

    Google Scholar 

  • Velicogna, I. and J. Wahr (2002). Postglacial rebound and earth’s viscosity structure from GRACE, J. Geophys. Res., 107, 10.1029/2001JB001735.

    Google Scholar 

  • Vermeersen, L.L.A. (2003). The potential of GOCE in constraining the structure of the crust and lithosphere from post-glacial rebound, Space Sci. Rev., 108, pp. 105–113.

    Article  Google Scholar 

  • Vermeersen, L.L.A. and R. Sabadini (1997). A new class of stratified visco-elastic models by analytical techniques, Geophys. J. Int., 139, pp. 530–571.

    Google Scholar 

  • Visser, P.N.A.M., R. Rummel, G. Balmino, H. Sünkel, J. Johannessen, M. Aguirre, P.L. Woodworth, C. Le Provost, C.C. Tscherning and R. Sabadini (2002). The European earth explorer mission GOCE: Impact for the geosciences, In: Ice Sheets, Sea Level and the Dynamic Earth, J.X. Mitrovica and L.L.A. Vermeersen (eds), AGU Geodynamics Series, 29, AGU, Washington DC, pp. 95–107.

    Google Scholar 

  • Wahr, J., M. Molenaar and F. Bryan (1998). Time variability of the earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, pp. 30,205–30,229.

    Article  Google Scholar 

  • Watts, A.B. and E.B. Burov (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness, Earth Planet. Sci. Lett., 213, pp. 113–131.

    Article  Google Scholar 

  • Wu, P. and W.R. Peltier (1982). Viscous gravitational relaxation, Geophys. J. R. Astron. Soc., 70, pp. 435–485.

    Google Scholar 

  • Wu, P., H. Wang and H. Schotman (2005) Postglacial induced surface motions, sea-levels and geoid rates on a spherical, self-gravitating, laterally heterogeneous earth, J. Geodyn., 39, pp. 127–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schotman, H.H.A., Visser, P.N.A.M., Vermeersen, L.L.A. (2007). High-Harmonic Gravity Signatures Related to Post-Glacial Rebound. In: Tregoning, P., Rizos, C. (eds) Dynamic Planet. International Association of Geodesy Symposia, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49350-1_18

Download citation

Publish with us

Policies and ethics