Skip to main content

Status of DORIS Stations in Antarctica for Precise Geodesy

  • Chapter
Dynamic Planet

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 130))

Abstract

Polar regions and especially Antarctica are nowadays recognised as exerting a major control upon the global Mean Sea Level (MSL) directly linked to climate changes. Monitoring and understanding the geodynamical behaviour of these regions is then of critical importance. The long-term displacement (or velocity) of reference sites helps constraining the ice sheet evolution prediction models. Several geodetic space techniques, such as GPS, observe displacements of such reference sites. In Antarctica, in addition to numerous GPS stations, four DORIS stations are permanently operating: Belgrano, Rothera, Syowa, Terre Adélie. In addition to the permanent DORIS stations, episodic DORIS campaigns took also place at Dome C / Concordia and on Sorsdal and Lambert glaciers. In this paper, we first present general information concerning the stations and the campaigns (exact location, period of measurements, etc). We then discuss the solutions obtained by different analysis centres (when available) for all DORIS stations in the Antarctic region. In particular, we use several ITRFs (from the early ITRF96 to ITRF2000) to see their impact on the derived velocities in Antarctica. An emphasis is given to the investigation and possible explanation of differences observed between each solution. Finally, we compare at these stations, the results of DORIS observations to the solutions from other geodetic techniques (GPS, VLBI) and to the results of repeated absolute gravity measurements (when available).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altamimi Z., P. Sillard, C. Boucher (2002). ITRF2000, A new release of the International Terrestrial Reference Frame for earth science applications, J Geophys Res, Solid Earth, Vol. 107(B10), pp. 2214.

    Article  Google Scholar 

  • Altamimi Z., C. Boucher, P. Willis (2005). Terrestrial Reference Frame requirements within GGOS, Journal of Geodynamics. Vol. 40(4–5), pp. 363–374

    Article  Google Scholar 

  • Amalvict M., Mäkinen J., Shibuya K. and Fukuda Y., 2005, Absolute Gravimetry in Antarctica: Status and Prospects, Journal of Geodynamics, submitted

    Google Scholar 

  • Beutler G., M. Rothcaher, S. Schaer, T.A. Springer, J. Kouba, R.E. Neilan (1999), The International GPS Service (IGS), an interdisciplinary service in support of Earth sciences, Advances in Space Research, Vol. 23(4), pp. 631–653.

    Article  Google Scholar 

  • Bouin MN, Vigny C (2000), New constraints on Antarctic plate motion and deformation from GPS data, Journal of Geophysical Research, Solid Earth, Vol. 105(B12), pp. 28279–28293.

    Article  Google Scholar 

  • Boucher C., Z. Altamimi, and P. Sillard (1998), The 1997 International Terrestrial Reference Frame (ITRF97), IERS Techn. Note 27, Paris Observatory.

    Google Scholar 

  • Bouin M.N., 2005, personal communication

    Google Scholar 

  • Cazenave A., Nerem R.S. (2004). Present-day sea level change, Observations and causes, Reviews of Geophysics, Vol. 42(3), RG3001

    Article  Google Scholar 

  • Crétaux JF, Soudarin L, Cazenave A, Bouille F (1998) Present-day Tectonic Plate Motions and Crustal Deformations from the DORIS Space System, J Geophys Res, Solid Earth, Vol. 103(B12), pp. 30167–30181

    Article  Google Scholar 

  • Dietrich R, Dach R, Engelhardt G, Ihde J, Korth W, Kutterer H-J, Lindner K, Mayer M, Menge F, Miller C, Niemeier W, Perlt J, Pohl M, Salbach H, Schenke H-W, Schöne T, Seeber G, Veit A, Völksen C, 2001, ITRF coordinates and plate velocities from repeated GPS campaign in Antarctica—an analysis based on different individual solutions. Journal of Geodesy, Vol. 74(11–12), pp. 756–766

    Article  Google Scholar 

  • Dietrich R, Rülke A, Ihde J, Lindner K, Miller H, Niemeier W, Schenke H-W, Seeber G, 2004, Plate kinematics and deformation status of the Antarctic Peninsula based on GPS, Global Planet Change, 42, 313–321

    Article  Google Scholar 

  • Donnelan A; and Luyendyk B.P., 2004, GPS evidence for a coherent Antarctic plate and for postglacial rebound in Marie Byrd Land, Global and Palnetary Change, 42, 305–311

    Article  Google Scholar 

  • Feissel-Vernier M., Valette J.J., Soudarin L., Le Bail K. (2005). Report of the 2003 Analysis campaign “Impact of GRACE gravity field models on IDS products”, IDS Report.

    Google Scholar 

  • Fukuda Y, Higashi T, Takemoto S, Iwano S, Doi K, Shibuya K, Hiraoka Y, Kimura I, McQueen H, Govind R., 2004, Absolute gravity measurements in Australia and Syowa Station, Antarctica. Gravity, Geoid and Space Missions GGSM 2004. IAG International Symposium. Porto, Portugal. August 30–September 3, 2004Series: IAG Symposia, Vol. 129 Jekeli, Christopher; Bastos, Luisa; Fernandes, Joana (Eds.) ftp://cddis.gsfc.nasa.gov/pub/doris/products/sinex_global #1, ftp://cddis.gsfc.nasa.gov/pub/doris/products/sinex_series #2, ftp://cddis.gsfc.nasa.gov/pub/doris/products/stcd #3

    Google Scholar 

  • Fukuzaki Y., Shibuya K., Doi K., Ozawa T., Nothnagel A., Jike T., Iwano S., Jauncey D. L., Nicolson G. D., McCulloch P. M. (2005). Results of the VLBI experiments conducted with Syowa Station, Antarctica, Journal of Geodesy, Vol. 79(6–7), pp. 379–388.

    Article  Google Scholar 

  • Govind et Valette, 2004, The Sordsal and Lambert campaigns: organisational aspects and first results, IDS 2004 Plenary Meeting, http://lareg.ensg.ign.fr/IDS/events/prog_2004.html, http://sideshow.jpl.nasa.gov/mbh/series.html, http://ids.cls.fr, http://itrf.ensg.ign.fr/ITRF_solutions/2000/results/ITRF2000_SCAR.SSC.txt

    Google Scholar 

  • James T.S., E.R. Ivins (1998). Predictions of crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum, Journal of Geophysical Research, Solid Earth, Vol. 103(B3), pp. 4993–5017.

    Article  Google Scholar 

  • Kreemer C., W.E. Holt, A.J. Haines (2003). An integrated global model of present-day plate motions and plate boundary deformation, Geophysical Journal International, Vol. 154(1), pp. 8–34.

    Article  Google Scholar 

  • Larson K, Freymueller J (1995), Relative motions of the Australia, Pacific and Antarctic plates by the Global Positioning System. Geophysical Research Letters, Vol. 22(1), pp. 37–40.

    Article  Google Scholar 

  • Makinen J, Amalvict M, Shibuya K, Fukuda Y (2006) Absolute Gravimetry in Antarctica: Status and Prospects, Journal of Geodynamics, in press

    Google Scholar 

  • Nakada M, Kimura R, Okuno J, Moriwaki K, Miura H, Maemoku H, 2000, Late Pleistocene and Holocene melting history of the Antarctic ice sheet derived from sea-level variations, Marine Geolo, Vol. 167, pp. 85–103.

    Article  Google Scholar 

  • Peltier W.R. (1996). Mantle viscosity and ice-age ice sheet topography, Science, Vol. 273(5280), pp. 1359–1364.

    Article  Google Scholar 

  • Sillard P., Z. Altamimi, and C. Boucher (1998). The ITRF96 realization and its associated velocity field, Geophysical Research Letters, Vol. 25(17), pp. 3223–3226.

    Article  Google Scholar 

  • Sillard P., and C. Boucher (2001). A review of algebraic constraints in Terrestrial Reference Frame datum definition, Journal of Geodesy, Vol. 75(2–3), pp. 63–73.

    Article  Google Scholar 

  • Soudarin L., J.F. Crétaux, A. Cazenave (1999). Vertical Crustal Motions from the DORIS space-geodesy system, Geophysical Research Letters, Vol. 26(9), pp. 1207–1210.

    Article  Google Scholar 

  • Tavernier G., H. Fagard, M. Feissel-Vernier, F. Lemoine, C. Noll, J.C. Ries, L. Soudarin, P. Willis (2005). The International DORIS Service, IDS, Advances in Space Research, Vol. 36(3), pp. 333–341.

    Article  Google Scholar 

  • Tregoning, P., A. Welsh, H. McQueen and K. Lambeck, 2000, The search for postglacial rebound near the Lambert Glacier, Antarctica Earth, Planets and Space, Vol. 52(11), pp. 1037–1041

    Google Scholar 

  • Turner J., Colwell S.R., Marshall G.J., Lachlan-Cope T.A., Carleton A.M., Jones P.D., Lagun V., Reid P.A., Iagovkina S. (2005). Antarctic climate change during the last 50 years, International Journal of Climatology, Vol. 25(3), pp. 279–294

    Article  Google Scholar 

  • Vincent C., J.J. Valette, L. Soudarin, J.F. Cretaux, B. Legresy, F. Remy, A. Capra (2000). DORIS campaigns at Dome Concordia, Antarctica in 1993 and 1999–2000, in Proc. DORIS Day 2000, CNES, France.

    Google Scholar 

  • Wahr J, Han D, Trupin A, (1995) Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic Earth. Geophysical Research Letters, Vol. 22(8), pp. 977–980.

    Article  Google Scholar 

  • Weller G. (1998). Regional impacts of climate change in the Arctic and Antarctic, Annals of Glaciology, Vol. 27, pp. 543–552

    Google Scholar 

  • Willis P., M. Heflin (2004). External validation of the GRACE gravity GGM01C gravity field using GPS and DORIS positioning results. Geophysical Research Letters, Vol. 31(13), L13616

    Article  Google Scholar 

  • Willis P., J.C. Ries (2005), Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000, Methods and realization, Journal of Geodesy, Vol. 79(6–7), pp. 370–378.

    Article  Google Scholar 

  • Willis P., B. Haines, J.P. Berthias, P. Sengenes, J.L. Le Mouel (2004). Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly, Comptes Rendus Geoscience, Vol. 336(9), pp. 839–846.

    Article  Google Scholar 

  • Willis P., C. Boucher, H. Fagard, Z. Altamimi (2005), Geodetic applications of the DORIS system at the French Institut Géographique National, Comptes Rendus Geoscience, Vol. 337(7), pp. 653–662.

    Article  Google Scholar 

  • Zumberge J.F., M.B. Heflin, D.C. Jefferson, M.M. Watkins, F.H. Webb (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, Solid Earth, Vol. 102(B3), pp. 5005–5017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amalvict, M., Willis, P., Shibuya, K. (2007). Status of DORIS Stations in Antarctica for Precise Geodesy. In: Tregoning, P., Rizos, C. (eds) Dynamic Planet. International Association of Geodesy Symposia, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49350-1_17

Download citation

Publish with us

Policies and ethics