Skip to main content

Selective Removal of Atoms as Basis for Ultra-High Density Nano-Patterned Magnetic and Other Media

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 94))

Summary

The paper demonstrates a possibility for effective modification of the thin-film material’ chemical composition, structure and physical properties as result of selective removal of atoms by the certain energy ion beam. One of the most promising results of this effect is a production of devices with nanostructured high-density patterned magnetic media.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.A. Gurovich et al.: Patent US 6,218,278 B1, priority May 1998.

    Google Scholar 

  2. B.A. Gurovich, D.I. Dolgy, E.A. Kuleshova, E.P. Velikhov, E.D. Ol’shansky, A.G. Domantovsky, B.A. Aronzon, E.Z. Meilikhov, Physics Uspekhi 44(1) (2001) 95.

    Article  CAS  Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Mechanics. 3rd edition, Vol.1, Butterworth-Heinemann, 1976.

    Google Scholar 

  4. M.W. Thompson, Defects and Radiation Damage in Metals. Cambridge Press, 1969.

    Google Scholar 

  5. Handbook of Thin Film Technology (Eds. L.I. Maissel, R. Gland), New York: McGraw-Hill, 1970.

    Google Scholar 

  6. K.L. Chopra, M.R. Randlett, R.N. Duff, Appl. Phys. Lett. 9, 402, (1966).

    Article  CAS  Google Scholar 

  7. Handbook of Physical Quantities. (Eds. I.S. Grigoriev, E.Z. Meilikhov), Published by CRC Pr, 1996.

    Google Scholar 

  8. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals, London, Butterworth, 1965.

    Google Scholar 

  9. R. Wiesendanger, H-J. Guntherodt (Eds.) Scanning Tunneling Microscopy II: Further Applications and Related Techniques, Springer Series in Surface Science, 28, Berlin: Springer, 1992.

    Google Scholar 

  10. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (Eds. D. Briggs, M.P. Seah), New York: Willey, 1983.

    Google Scholar 

  11. Physical Metallurgy, 3rd edition, (Eds. R.W. Cahn and P. Haasen), North-Holland Physics Publishing, 1983.

    Google Scholar 

  12. A.A. Abrikosov, Fundamental of the Theory of Metals, Amsterdam: North-Holland, 1988.

    Google Scholar 

  13. K.L. Chopra, M.R. Randlett, R.N. Duff, Philos. Mag., 16, 261, (1967).

    CAS  Google Scholar 

  14. S. Chou and P. Krauss, Microelectronic Engineering 35, 237, (1997).

    Article  CAS  Google Scholar 

  15. S. Chou, P. Krauss, W. Zhang, L. Guo and L. Zhuang, J. Vac. Sci. Technol. B 15(6) 2897, (1997).

    Article  CAS  Google Scholar 

  16. S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Brunch and C.M. Sotomayor Torres, Nanotechnology 12 91, (2001).

    Article  CAS  Google Scholar 

  17. B. Heidari, I. Maximov and L. Montelius, J. Vac. Sci. Technol. B 18(6), 3557, (2000).

    Article  CAS  Google Scholar 

  18. L.J. Heyderman, H. Schift, C. David, B. Ketterer, M. Auf der Maur, J. Gobrecht, Microelectronic Engineering 57–58, 375, (2001).

    Article  Google Scholar 

  19. F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, Microelectronic Engineering 53, 163, (2000).

    Article  CAS  Google Scholar 

  20. B.A. Gurovich, D.I. Dolgy, E.A. Kuleshova, E.Z. Meilikhov, A.G. Domantovsky, K.E. Prikhodko, K.I. Maslakov, B.A. Aronzon, V.V. Rylkov, A. Yu. Yakubovsky, Selective Removal of Atoms as a New Method for Fabrication of Nanoscale Patterned Media. Microelectronic Engineering, 69, N 2–4, pp. 65–75, (2003)

    Google Scholar 

  21. Gurovich B.A., Kuleshova E.A., Meilikhov E.Z., Maslakov K.I. Selective removal of atoms as a new method for manufacturing of nanostructures for various applications. Journal of Magnetism and Magnetic Materials 2004, 272–276, pp. 1629–1630, (2004).

    Article  CAS  Google Scholar 

  22. Gurovich B.A., Kuleshova E.A., Dolgy D.I. et all. Selective removal of atoms as a new method for fabrication of single-domain patterned magnetic media and multi-layered nanostructures. B. Aktas et al. (eds.), Nanostructured Magnetic Materials and their Applications. Kluwer Academic Publishers, pp. 13–22, (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurovich, B. et al. (2007). Selective Removal of Atoms as Basis for Ultra-High Density Nano-Patterned Magnetic and Other Media. In: Aktaş, B., Mikailov, F., Tagirov, L. (eds) Magnetic Nanostructures. Springer Series in Materials Science, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49336-5_5

Download citation

Publish with us

Policies and ethics