Advertisement

Computer-Aided Interactive Object Delineation Using an Intelligent Paintbrush Technique

  • Frederik Maes
  • Dirk Vandermeulen
  • Paul Suetens
  • Guy Marchal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 905)

Abstract

A method for fast generic object segmentation is presented that allows the user to quickly paint the object of interest in the image using an intelligent paintbrush. This intelligence is based on a partitioning of the image in segmentation primitives, which are computed automatically by merging watershed regions with similar image intensity distribution using the Minimum Description Length principle. We show results for Magnetic Resonance images of the heart and of the brain and for Computerized Tomography images of the abdomen.

Keywords

Minimum Description Length Gradient Magnitude Canny Edge Boundary Pixel Chain Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beard, D. V., Eberly, D., Hemminger, B., Pizer, S., Faith, R., Kurak, C., Livingston, M.: Interacting with image hierarchies for fast and accurate object segmentation. Proc. SPIE Newport Beach, CA, 2167 (1994) 10–17CrossRefGoogle Scholar
  2. 2.
    Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 11 (1986) 679–698CrossRefGoogle Scholar
  3. 3.
    Cover, T. M., Thomas, J. A.: Elements of information theory. John Wiley & Sons (1991)Google Scholar
  4. 4.
    Duda, R. O., Hart P. E.: Pattern classification and scene analysis. John Wiley & Sons (1973)Google Scholar
  5. 5.
    Eberly, D., Pizer, S. M.: Ridge flow models for image segmentation. Proc. SPIE Newport Beach, CA, 2167 (1994) 54–64CrossRefGoogle Scholar
  6. 6.
    Griffin, L. D., Colchester, A. C. F., Robinson, G. P.: Scale and segmentation of grey-level images using maximum gradient paths. Image and Vision Computing 10 (1992) 389–402CrossRefGoogle Scholar
  7. 7.
    Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.: Optimization by simulated annealing. Science 220 (1982) 671–680MathSciNetCrossRefGoogle Scholar
  8. 8.
    Leclerc, Y. G.: Constructing simple stable descriptions for image partitioning. Intern. J. Computer Vision 3 (1989) 73–102CrossRefGoogle Scholar
  9. 9.
    Rissanen, J.: Minimum-description-length principle. Encyclopedia of Statistical Sciences, Wiley, New York 5 (1987) 425–527Google Scholar
  10. 10.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. PAMI 13 583–598Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Frederik Maes
    • 1
    • 2
    • 3
  • Dirk Vandermeulen
    • 1
    • 2
    • 3
  • Paul Suetens
    • 1
    • 2
    • 3
  • Guy Marchal
    • 1
    • 2
    • 3
  1. 1.Laboratory for Medical Imaging ResearchKatholieke UniversiteitLeuvenBelgium
  2. 2.Department of Electrical EngineeringESATHeverleeBelgium
  3. 3.Department of RadiologyUniversity Hospital GasthuisbergLeuvenBelgium

Personalised recommendations