A Unified Framework to Assess Myocardial Function from 4D Images

  • P. Shi
  • G. Robinson
  • A. Chakraborty
  • L. Staib
  • R. Constable
  • A. Sinusas
  • J. Duncan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 905)


This paper describes efforts aimed at developing a unified framework to more accurately quantify the local, regional and global function of the left ventricle (LV) of the heart, under both normal and ischemic conditions, using four—dimensional (4D) imaging data over the entire cardiac cycle. The approach incorporates motion information derived from the shape properties of the endocardial and epicardial surfaces of the LV, as well as mid—wall 3D instantaneous velocity information from phase contrast MR images, and/or mid—wall displacement information from tagged MR images. The integration of the disparate but complementary sources of information overcomes the limitations of previous work which concentrates on motion estimation from a single image—derived source. 1


Left Ventricle Unify Framework Infarct Zone Left Ventricle Wall Endocardial Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Axel and L. Dougherty. MR imaging of motion with spatial modulation of magnetization. Radiology, 171: 841–845, 1989.Google Scholar
  2. 2.
    K. Bathe and E. Wilson. Numerical Methods in Finite Element Analysis. Prentice-Hall, New Jersey, 1976.zbMATHGoogle Scholar
  3. 3.
    F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. on Patt. Anal, and Mach. Intell., pages 567–585, 1989.Google Scholar
  4. 4.
    A. Chakraborty, L. H. Staib, and J. S. Duncan. An integrated approach to boundary finding in medical images. In Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 13–22, 1994.CrossRefGoogle Scholar
  5. 5.
    J. Chesebro and G. Knatterrud et al. Thrombolysis in myocardial infarction (TIMI) trial phase I: A comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Circulation, 76: 142–154, 1987.CrossRefGoogle Scholar
  6. 6.
    A.T. Constable, K. Rath, A. Sinusas, and J. Gore. Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magnetic Resonance in Medicine, 32: 33–42, 1994.CrossRefGoogle Scholar
  7. 7.
    T. S. Denney and J. L. Prince. 3d displacement field reconstruction from planar tagged cardiac MR images. In Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 51–60, 1994.CrossRefGoogle Scholar
  8. 8.
    W. Grossman. Assessment of regional myocardial function. JA CC, 7 (2): 327–328, 1986.CrossRefGoogle Scholar
  9. 9.
    B. Horowitz and S. Pentland. Recovery of non-rigid motion and structure. In IEEE Conf. on CVPR, pages 325–330, Maui, June 1991.Google Scholar
  10. 10.
    C. Kambhamettu and D. Goldgof. Point correspondence recovery in non-rigid motion. In IEEE Conf. on CVPR, pages 222–227, June 1992.Google Scholar
  11. 11.
    C. Nastar and N. Ayache. Non-rigid motion analysis in medical images: a physically based approach. In Information Processing in Medical Imaging. Springer-Verlag, 1993.Google Scholar
  12. 12.
    J. Park, D. Metaxas, and A. Young. Deformable models with parameter functions: Application to heart wall modeling. In IEEE Conf. on CVPR, pages 437–442, June 1994.Google Scholar
  13. 13.
    N. J. Pelc, A. Shimakawa, and G. H. Glover. Phase contrast cine MRI. In Proceedings of the 8th Annual SMRM, page 101, Amsterdam, 1989.Google Scholar
  14. 14.
    P. Shi, A. Amini, R. T. Constable, and J. Duncan. Tracking tagged MR images with energy-minimizing deformable grids. In Proceedings of the 18th IEEE Annual Northeast Bioengineering Conference, pages 133–134, 1992.Google Scholar
  15. 15.
    P. Shi, A. Amini, G. Robinson, A. Sinusas, R. T. Constable, and J. Duncan. Shape-based 4d left ventricular myocardial function analysis. In Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 88–97, 1994.CrossRefGoogle Scholar
  16. 16.
    L. H. Staib and J. S. Duncan. Parametrically deformable contour models. IEEE Trans. on Patt. Anal. and Mach. Intell., 14 (11): 1061–1075, 1992.CrossRefGoogle Scholar
  17. 17.
    L. H. Staib and J. S. Duncan. Deformable fourier models for surface finding in 3d images. In Visualization in Biomedical Computing, pages 90–104, Oct. 1992. SPIE 1808.Google Scholar
  18. 18.
    R. Szeliski and S. Lavallee. Matching 3d anatomical surfaces with non-rigid deformations using octree-splines. In Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 144–153, 1994.CrossRefGoogle Scholar
  19. 19.
    D. Terzopolous and D. Metaxas. Dynamic 3d models with local and global deformation: Deformable superquadrics. IEEE Trans. on Patt. Anal. and Mach. Intell., 13 (17), 1991.Google Scholar
  20. 20.
    A. A. Young, D. L. Kraitchman, and L. Axel. Deformable models for tagged MR images: Reconstruction of two-and three-dimensional heart wall motion. In Proceedings of the IEEE Workshop on Biomedical Image Analysis, pages 317–323, 1994.CrossRefGoogle Scholar
  21. 21.
    E. Zerhouni and et. al. Tagging of the human heart by multiplanar selective RF saturation for the analysis of myocardial contraction. In Abstracts of the Ann. Meeting of the Soc. of MR in Imaging, page 10, San Francisco, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. Shi
    • 1
  • G. Robinson
    • 1
  • A. Chakraborty
    • 1
  • L. Staib
    • 1
  • R. Constable
    • 1
  • A. Sinusas
    • 1
  • J. Duncan
    • 1
  1. 1.Departments of Diagnostic Radiology, Electrical Engineering, and MedicineYale UniversityNew HavenUSA

Personalised recommendations