Advertisement

2D and 3D Motion Analysis in Digital Subtraction Angiography

  • J. L. Coatrieux
  • F. Mao
  • C. Toumoulin
  • R. Collorec
Part of the Lecture Notes in Computer Science book series (LNCS, volume 905)

Abstract

A very active research is conducted on notion analysis. Most of the concepts, methods and assumptions are well established and lead to additional improvements in computer vision applications. Even in medicine where we have to deal with noisy data, low contrast structures and deformable objects, they bring new cues at all the processing stages. This paper emphasizes the specificities of this area and also the potential difficulties to face. A compilation of results is given aimed at the quantification of heart kinetics in Digital Subtraction Angiography (DSA). They illustrate the benefits of cooperative schemes such as motion based segmentation, moving object identification, three dimensional reconstruction and interpretation.

Keywords

Digital Subtraction Angiography Motion Estimation Cooperative Scheme Perceptual Grouping Active Contour Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beasse C. Modèle de connaissance pour l’identification d’objets, Thèse, Université de Rennes I, Juin 1993.Google Scholar
  2. Coatrieux J.L., Garreau M., Collorec R., Roux C. Computer vision approaches for the three dimensional reconstruction of coronary arteries: review and prospects, Critical Reviews in Biomedical Engineering, 22, 1, 1994, pp. 1–38Google Scholar
  3. Coatrieux J.L., Garreau M., Ruan S., Mao F. Sur l’analyse de mouvement en imagerie médicale, Innov. Technol. Biol. Med., 15, 3, 1994, pp. 253–267.Google Scholar
  4. Coatrieux J.L., Rong J.H., Collorec R. A framework for automatic analysis of the dynamic behaviour of coronary angiograms, Intern. J. Cardiac Imaging, 8, 10, 1992, pp. 1–10.CrossRefGoogle Scholar
  5. Cornelius N., Kanade T.: Adapting optical flow to measure object motion in reflectance and X-ray image sequences, Proc. ACM Siggraph on motion, Representation and perception, 1986, pp. 145–153.Google Scholar
  6. Garreau M., Coatrieux J.L., Collorec R., Chardenon C. A knowledge based approach for 3-D reconstruction and labelling of vascular networks from biplane angiographie projections, IEEE Trans. Med. Imaging, 10, 2, 1991, pp. 122–131.CrossRefGoogle Scholar
  7. Horn B.K.P., Schunck B.G.: Determining optic flow, Artif. Intel., 17, 1981, pp. 185–203.Google Scholar
  8. Kass M., Witkin A., Terzopoulos D.: Snakes: active contour models, Intern. J. Comput. Vision, 1988, pp. 321–331.Google Scholar
  9. Mao F., Coatrieux J.L.: A triplet-based description of vessels in angiography, Proc. 15th IEEE-EMBS Conf., San Diego, Oct. 1993, pp. 102–103.Google Scholar
  10. Mongrain R., Meunier J., Bertrand M. Motion analysis in biomedical images, Thematic Issue, Innov. Technol. Biol. Med., 15, 3, 1994.Google Scholar
  11. Nagel H.H.: Image Sequences-Ten (octal) years: from phenomenology towards a theoritical foundation, Intern. J. Pattern Recog. Artif. Intelligence, 2, 3, 1988, pp. 459–483.MathSciNetCrossRefGoogle Scholar
  12. Puentes J., Roux C., Garreau M., Coatrieux J.L.: Three-dimensional movement analysis in digital subtraction angiography: symbol generation from 3-D optical flow, Conf. Computers in Cardiology 94, Bethesda, USA, September 1994.Google Scholar
  13. Rong J.H., Collorec R., Coatrieux J.L., Descaves C.: Estimation de mouvement en coronarographie, Innov. Technol. Biol. Med., 10, 2, 1989, pp. 175–186.Google Scholar
  14. Ruan S., Bruno A., Coatrieux J.L.: three-dimensional motion and reconstruction of coronary arteries from biplane cineangiography, Image and Vision Computing, 12, 10, 1994, pp. 683–689.CrossRefGoogle Scholar
  15. Sarkar S., Boyer K.L.: Perceptual organization in Computer Vision: a review and a proposal for a classificatory structure, IEEE-Trans. Syst. Man. Cybernetics 23, 2, 1993, pp. 382–399.CrossRefGoogle Scholar
  16. Venaille C., Mishler D., Coatrieux J.L.: Un algorithme peu contraint d’appariement de primitives courbes par st r ovision trinoculaire, Revue Technique Thomson CSF, 24, 4, 1992, pp. 1071–1099.Google Scholar
  17. Windyga P.: Evaluation et modélisation de connaissances pour la reconstruction tridimensionnelle du réseau vasculaire cardiaque en angiographie biplan, Thèse, Université de Rennes I, Mars 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. L. Coatrieux
    • 1
  • F. Mao
    • 1
  • C. Toumoulin
    • 1
  • R. Collorec
    • 1
  1. 1.Laboratoire Traitement du Signal et de l’Image, INSERM, Campus de BeaulieuUniversité de RennesRENNES CédexFrance

Personalised recommendations