Registration of 3D Objects Using Linear Algebra

  • Gilles Burel
  • Hugues Henocq
  • Jean-Yves Catros
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 905)


A method for estimating the orientation of 3D objects without point correspondence information is described. It is based on the decomposition of the object onto a basis of spherical harmonics. Tensors are obtained, and their normalization provides the orientation.


Spherical Harmonic Medical Imaging Application IEEE Computer Graphic Polyhedral Object Cranial Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.J. Holupka & H.M. Kooy, “Spherical harmonic expansion of cranial surfaces”, Medical Physics, 18 (4), pp 765–768, Jul/Aug 1991CrossRefGoogle Scholar
  2. 2.
    E.J. Holupka & H.M. Kooy, “A geometric algorithm for medical image correlations”, Medical Physics, 19 (2), pp 433–438, Mar/Apr 1992CrossRefGoogle Scholar
  3. 3.
    J.J. Jacq & C. Roux, “Recalage Monomodalité Automatique en Imagerie Médicale 2D et 3D à l’aide d’un Algorithme Génétique Traditionnel”, 9 congrès RFIA, Paris, 11–14 janvier 1994, pp 109–120Google Scholar
  4. 4.
    R. Lenz, “Group theoretical methods in image processing”, Lecture notes in computer science, n° 413, 1987Google Scholar
  5. 5.
    S. Linnainman et al., “Pose Determination of a three Dimensionnai Object Using Triangle Pairs”, IEEE-PAMI, vol. 10, n° 5, Sept. 1988Google Scholar
  6. 6.
    K.D. Toennies et al., “Registration of 3D Objects and Surfaces”, IEEE Computer Graphics and Applications, vol. 10, n° 3, pp 52–62, May 1990CrossRefGoogle Scholar
  7. 7.
    E. Wigner, “Group Theory and its application to Quantum Mechanics of Atomic Spectra”, New-York: Academic, 1959zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Gilles Burel
    • 1
  • Hugues Henocq
    • 1
  • Jean-Yves Catros
    • 1
  1. 1.Thomson Broadband SystemsAv. Belle FontaineCesson-SévignéFrance

Personalised recommendations