Advertisement

Using a 3D Position Sensor for Registration of SPECT and US Images of the Kidney

  • Olivier Péria
  • Laurent Chevalier
  • Anne François-Joubert
  • Jean-Pierre Caravel
  • Sylvie Dalsoglio
  • Stéphane Lavallée
  • Philippe Cinquin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 905)

Abstract

The correlation of functional images of the kidney with anatomical images is important to improve diagnosis and treatment. We propose a method to register SPECT (Single Photon Emission Computed Tomography) and US (ultrasound) images of the kidney that consists in tracking the US probe in the space thanks to an optical three-dimensional position sensor. This method has been experimented on three patients and has provided very promising results.

Keywords

Single Photon Emission Compute Tomography Rigid Body SPECT Image Position Sensor SPECT System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. McBiles. Correlative Imaging of the Kidney. In Seminars in Nuclear Medecine, volume 14(3), pages 219–233, july 1994.Google Scholar
  2. 2.
    S. Lavallee. Registration for Computer Integrated Surgery: methodology, state of the art. In R. Taylor, S. Lavallee, G. Burdea, and R. Mosges, editors, Computer Integrated Surgery (to appear). MIT Press, 1995.Google Scholar
  3. 3.
    P.A. van den Elsen, E.J. Pol, and M.A. Viergever. Medical Image Matching - A Review with Classification. In IEEE Eng. Med. Biol., volume 12(1), pages 26–39, march 1993.Google Scholar
  4. 4.
    O. Peria, S. Lavallee, G. Champleboux, A.F. Joubert, J.F. Lebas, and P. Cinquin. Millimetric registration of SPECT and MR images of the brain without headholders. In IEEE Engineering Medicine Biology Society (EMBS), volume 1, pages 14–15, San Diego, november 1993.Google Scholar
  5. 5.
    O. Peria, A. Francois-joubert, S. Lavallee, G. Champleboux, P. Cinquin, and S. Grand. Accurate registration of SPECT and MR brain images of patients suffering from epilepsy or tumor. In MRCAS 94, Medical Robotics and Computer Assisted Surgery, volume 1, pages 58–62, Pittsburgh, PA, september 1994.Google Scholar
  6. 6.
    K.S. Arun, T.S. Huang, and S.D. Blostein. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Machine Intell., PAMI-9(5): 698–700, 1987.Google Scholar
  7. 7.
    S. Umeyama. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Machine Intell., PAMI-13 (4): 376–380, 1991.Google Scholar
  8. 8.
    O.D. Faugeras and M. Hebert. The representation, recognition and locating of 3D objects. Int. J. Robotic Res., 5 (3): 27–52, June 1986.CrossRefGoogle Scholar
  9. 9.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, England, second edition, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Olivier Péria
    • 1
  • Laurent Chevalier
    • 1
  • Anne François-Joubert
    • 2
  • Jean-Pierre Caravel
    • 2
  • Sylvie Dalsoglio
    • 3
  • Stéphane Lavallée
    • 1
  • Philippe Cinquin
    • 1
  1. 1.TIMC-IMAG, Faculté de Médecine de GrenobleLa TroncheFrance
  2. 2.Service de médecine nucléaireC.H.U. A. MichallonGrenobleFrance
  3. 3.Service de radiologieC.H.U. A. MichallonGrenobleFrance

Personalised recommendations