Skip to main content

Methods for Measuring Atmospheric Acidic Particles and Gases

  • Chapter
Airborne Particulate Matter

Part of the book series: The Handbook of Environmental Chemistry ((HEC4,volume 4 / 4D))

  • 253 Accesses

Summary

This chapter presents an overview of methods to measure atmospheric acidic particles and gases. The main formation mechanisms and physico-chemical properties of inorganic and organic acidic aerosols are discussed first. The second part is focused on the main methods of measuring these pollutants, with special emphasis spent on the shortcomings of using filters, the advantages and disadvantages of diffusion denuders, and the use of conventional impactors to obtain the size distribution of acidic particles in the atmosphere. The final part includes results from field studies conducted in the northern United States, presenting typical levels of ambient acidic pollutants, and discussion of their spatial and temporal concentration variations in urban and rural areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spengler JD, Keeler GJ, Koutrakis P, Ryan PB, Raizenne M, Franklin CA (1989) Exposures to acidic aerosols. Environ Health Perspect 79:43

    Article  CAS  Google Scholar 

  2. Finlayson-Pitts BJ, Pitts JN Jr(1986) Atmospheric chemistry John Wiley & Sons, New York

    Google Scholar 

  3. Koutrakis P, Mueller PK(1989) Atmospheric acidity: chemical and physical factors. Proc of Air & Waste Management Association, Anaheim, CA, June 25–30

    Google Scholar 

  4. Cadle RD (1972) Formation and chemical reaction of atmospheric particles. J Colloid Interface Sci 13:25–31.

    Article  Google Scholar 

  5. Tang H, Eatough DJ, Lewis EA, Hansen LD, Gunther K, Benlap D, Crawford J (1986) The generation and decay of environmental tobacco smoke constituents in an indoor environment. Proc of the EPA/APCA Symposium on the Determination of Toxic and Related Air Pollutants, May 1989, Air and Waste Management Association, Raleigh, NC:596–605

    Google Scholar 

  6. Koutrakis P, Wolfson JM, Spengler JD, Stern B, Franklin CA (1989) Equilibrium size of atmospheric sulfates as a function of relative humidity. J Geophys Res 94:6442–6448

    Article  CAS  Google Scholar 

  7. Pierson WR, Brachaczek WW, Truex TJ, Butler JW, Korniski TJ (1989) Ambient sulfate measurements on Allegheny Mountain and the question of atmospheric sulfate in the northeastern United States. Ann NY Acad Sci 338, 145–173

    Article  Google Scholar 

  8. Pitts JN (1984) Atmospheric implications of simultaneous nighttime measurements of NO3 radicals and HONO. Geophys Res Lett 11:557.

    Article  CAS  Google Scholar 

  9. Brauer M, Koutrakis P, Keeler GJ, Spengler JD (1991) Indoor and outdoor concentrations of inorganic acidic aerosols and gases. J Air Waste Manage Assoc 41, 171

    Article  CAS  Google Scholar 

  10. Koutrakis P, Thompson KM, Wolfson JM, Spengler JD, Keeler J, Slater J (1992) Determination of aerosol strong acidity losses due to interactions of collected particles: results from laboratory and field studies. Atmos Environ 26A:987–995

    Article  Google Scholar 

  11. Stelson AW, Seinfeld JH (1982) Thermodynamic prediction of the water activity of NH4NO3 dissociation constant, density, and refractive index for the NH4NO3-[NH4]2SO4-H2O system at 25°C. Atmos Environ 16:2507–2514

    Article  CAS  Google Scholar 

  12. Jacob DJ, Wofsy SC (1988) Photochemistry of biogenic emissions over the Amazon forests. J Geophys Res 93:1477–1486

    Article  CAS  Google Scholar 

  13. Lawrence JE, Koutrakis P (1994) Measurement of formic and acetic acids: methods evaluation and results from field studies. Environ Sci & Technol, in press

    Google Scholar 

  14. Grosjean D (1983) Polycyclic aromatic hydrocarbons in Los Angeles air from samples collected on Teflon, glass and quartz filters. Atmos Environ 17:2565–2573

    Article  CAS  Google Scholar 

  15. Cautreels W, Van Cauwenberghe K, Guzman LA (1977) Comparison between the organic fraction of suspended matter at a background and an urban area. The Science and the Total Environment 8:79–88

    Article  CAS  Google Scholar 

  16. Simoneit BR, Mazurek MA(1982) Organic matter of the troposphere-II. Natural background of biogenic lipid matter in aerosols from urban areas of China. Atmos Environ 16:2139–2159

    Article  CAS  Google Scholar 

  17. Stephanou EG (1991) Analysis of anthropogenic and biogenic lipids in the coastal area in East Mediterranean Sea. Fresenius J Anal Chem 170:133–138

    Google Scholar 

  18. Kawamura K, Kaplan IR(1987) Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ Sci & Technol 21:105–110

    Article  CAS  Google Scholar 

  19. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit RT(1991) Sources of fine organic aerosols. 1. Charbroilers and meat cooking operations. Environ Sci & Technol 25:1112–11125

    Article  CAS  Google Scholar 

  20. Schueltze D (1975) Analysis of complex mixtures by computer controlled high resolution mass spectrometry. I-Application to atmospheric aerosol composition. Biom Mass Spectrom 2:288–298

    Article  Google Scholar 

  21. Cronn DR, Charlson RJ, Knights RL, Crittenden AL, Appel BR (1977) A survey of the molecular nature of primary and secondary components of particles in urban air by high-resolution mass spectrometry. Atmos Environ 11:929–937

    Article  CAS  Google Scholar 

  22. McMahon TA, Denison PJ (1979) Empirical atmospheric deposition parameters-A survey. Atmos Environ 13:571–585

    Article  CAS  Google Scholar 

  23. Seinfeld JH (1989) Urban air pollution: state of the science. Science 243:745–752

    Article  CAS  Google Scholar 

  24. Shannon JD (1981) A model of regional long-term average sulfur atmospheric pollution, surface removal and net horizontal flux. Atmos Environ 15:689–701.

    Article  CAS  Google Scholar 

  25. Hutzincker JJ, Hoffmann RS, Cary RA (1984) Aerosol sulfur episodes in St. Louis, Missouri. Environ Sci and Technol 18:962–967

    Article  Google Scholar 

  26. Waldman JM, Lioy PJ, Thurston GD, Lippmann M (1990) Spatial and temporal patterns in summertime sulfate aerosol acidity and neutralization within a metropolitan area. Atmos Environ 24B, 115

    Article  Google Scholar 

  27. Tanner RG (1993) Measuring the strong acid content of atmospheric aerosol particles. In: Measurement Challenges in Atmospheric Chemistry, edited by L. Newman, American Chemical Society, Washington, DC

    Google Scholar 

  28. Coutant RW(1977) effect of environmental variables on collection of atmospheric sulfate. Environ Sci and Technol 11:873–878.

    Article  CAS  Google Scholar 

  29. Witz S and McPhee RD (1977) Effect of different types of glass filters on total suspended particulates and their chemical composition. J Air Pollut Contr Assoc 27:239–241.

    Article  CAS  Google Scholar 

  30. Appel BR, Povard V, Kothny EL (1984) Artifact particulate sulfate and nitrate formation on filter media. Atmos Environ 18:409.

    Article  CAS  Google Scholar 

  31. Witz S (1985) Effect of environmental factors on filter alkalinity and artifact formation. Environ Sci & Technol 19:831.

    Article  CAS  Google Scholar 

  32. Shaw RW, Stevens RK, Bowermaster J, Tesch JW, Tew E (1982) Measurements of atmospheric nitrate and nitric acid: the denuder difference experiment. Atmos Environ 16:845

    Article  CAS  Google Scholar 

  33. Appel BR, Tokiwa Y, Haik M, Kothny EL (1984) Artifact particulate sulfate, and nitrate formation on filter media. Atmos Environ 18:409

    Article  CAS  Google Scholar 

  34. Durham JL, Wilson WE, Bailey EB (1978) Application of an SO2 denuder for continuous measurement of sulfur in submicrometric aerosols. Atmos Environ 12:883–886

    Article  CAS  Google Scholar 

  35. Ferm M (1979) Method for determination of atmospheric ammonia. Atmos Environ 13:1385–1393

    Article  CAS  Google Scholar 

  36. Shaw RW, Stevens RK, Bowermaster J, Tesch JW, Tew E (1979) Atmos Environ 16:845–853.

    Google Scholar 

  37. Forrest J, Spandau DJ, Tanner RL, Newman L (1982) Atmos Environ 16:1473–1485

    Article  CAS  Google Scholar 

  38. Braman RS, Shelley TJ, McClenney WA (1982) Tungstic acid for the preconcentration and determination of gaseous and particulate ammonia and nitric acid in ambient air. Analytical Chem 54:356–364

    Article  Google Scholar 

  39. Koutrakis P, Wolfson JM, Slater JL, Brauer M, Spengler JD (1988) Evaluation of an annular denuder/filter pack system to collect acidic aerosols and gases. Environ Sci and Technol 22(12): 1463–1468

    Article  CAS  Google Scholar 

  40. Koutrakis P, Sioutas C, Ferguson S, Wolfson JM, Mulik JD, Burton RM(1993) Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric particles and gases. Environ Sci & Technol 27:2497–2501

    Article  CAS  Google Scholar 

  41. Brauer M, Koutrakis P, Wolfson JM, Spengler JD (1989) Evaluation of an annular denuder system under simulated atmospheric conditions. Atmos Environ 23:1981–1986

    Article  CAS  Google Scholar 

  42. Appel BR, Povard V, Kothny EL (1988) Loss of nitric acid within inlet devices intended to exclude coarse particles during atmospheric sampling. Atmos Environ 11:2535–2540.

    Google Scholar 

  43. Koutrakis P, Wolfson JM, Brauer M, Spengler JD (1990) Design of a glass impactor for an annular denuder/filter pack system. Aerosol Sci and Technol 12:607–613

    Article  Google Scholar 

  44. Stevens RK, Dzubay TG, Russwurm G, Rickel D (1978) Sampling and analysis of atmospheric sulfates and related species. Atmos Environ 21:589

    Google Scholar 

  45. Possanzini M, Febo A, Liberti A (1983) New design of high performance denuder for the sampling of atmospheric pollutants. Atmos Environ 17:2605–2610

    Article  CAS  Google Scholar 

  46. Stevens RK, Paur JR, Allegrini I, DeSantis F, Febo A, Perrino C, Possanzini M(1985) Measurement of HNO3, SO2, NH3, and particulate nitrate with an annular denuder system. Proc 5th Annual National Symposium on Recent Advances in the Measurement of Air Pollution, US EPA, Rayleigh, NC

    Google Scholar 

  47. Appel BR (1993) Sampling of selected labile atmospheric pollutants. In: Measurement Challenges in Atmospheric Chemistry, edited by L. Newman, American Chemical Society, Washington, DC

    Google Scholar 

  48. Appel BR, Povard V, Kohny EL (1988) Loss of nitric acid within inlet devices intended to exclude coarse particles during atmospheric sampling. Atmos Environ 11:2535–2540

    Google Scholar 

  49. Coutant RW, Callahan PJ, Kuhlman MR, Lewis RG (1989) Design and performance of a high-volume compound annular denuder. Atmos Environ 23(10):2205–2211

    Article  CAS  Google Scholar 

  50. Suh HH, Spengler JD, Koutrakis P (1992) Personal exposures to acid aerosols and ammonia. Environ Sci Technol 26: 2507

    Article  CAS  Google Scholar 

  51. Bowermaster J, Shaw RW (1981) J Air Pollut Contr Assoc 31:787.

    Article  CAS  Google Scholar 

  52. Rosenberg C, Winiwarter W, Gregori M, Pech G, Casensky V, Puxbaum H (1988) Fresenius Z. Anal Chem 331:1–7

    Article  CAS  Google Scholar 

  53. Ye Y, Tsai CJ, Pui DYH, Lewis CW (1991) Aerosol Sci and Technol 14:102–111

    Article  CAS  Google Scholar 

  54. Sioutas C, Koutrakis P, Wolfson JM(1994) Particle losses in glass honeycomb denuder samplers. Aerosol Sci and Technol, in press

    Google Scholar 

  55. Whitby KT, Husar RB, Liu BYH (1972) J Colloid Interface Sci 39:177–204

    Article  CAS  Google Scholar 

  56. Wang HC, John W (1988) Characteristics of the Berner impactor for sampling inorganic ions. Aerosol Sci & Technol 8(2):157–172

    Article  CAS  Google Scholar 

  57. Ahlberg MS, Winchester JW (1978) Dependence of aerosol sulfur particle size on relative humidity. Atmos Environ 12:1631–1632

    Article  CAS  Google Scholar 

  58. Hinds WC(1982) Aerosol technology: Properties, behavior and measurement of airborne particles John Wiley & Sons, New York

    Google Scholar 

  59. Marple VA, Liu BYH(1974) Characteristics of laminar jet impactors. Environ Sci & Technol 7:648–654

    Article  Google Scholar 

  60. Marple VA, Willeke K(1976) In: Fine particles: Aerosol generation, measurement, sampling, and analysis. (B.Y.H Liu ed.)

    Google Scholar 

  61. Fuchs NA(1964) The Mechanics of Aerosols Pergammon Press, New York.

    Google Scholar 

  62. Hering SV, Flagan RC, Friedlander SK (1978) Design and evaluation of a new low pressure impactor-1. Environ Sci Technol 12:667–673

    Article  CAS  Google Scholar 

  63. Marple VA, Rubow KL, Behm SM(1991) A micro-orifice uniform deposit impactor (MOUDI). Aerosol Sci & Technol 14: 434–446

    Article  CAS  Google Scholar 

  64. Biswas P, Jones CL, Flagan RC (1987) Distortion of size distributions by condensation and evaporation in aerosol instruments. Aerosol Sci and Technol 7:231–246.

    Article  CAS  Google Scholar 

  65. Alberg MS, Winchester JW (1979) Dependence of aerosol sulfur particle size on relative humidity. Atmos Environ 12:1631–1632.

    Google Scholar 

  66. Koutrakis P, Kelly BP (1993) Equilibrium size of atmospheric aerosol sulfates as a function of particle acidity and ambient relative humidity. J Geophys Res 98:7141–7147

    Article  CAS  Google Scholar 

  67. Suh HH, Allen GA, Aurian-Blajeni D, Koutrakis P(1994) Field method intercomparison for the characterization of acid aerosol and gases. Atmos Environ in press

    Google Scholar 

  68. Marple VA, Rubow KL, Turner W, Spengler JD (1987) Low flow rate sharp cut impactors for indoor air sampling: design and calibration. J Air Pollut Contr Assoc 37:1303–1307.

    CAS  Google Scholar 

  69. Allen GA, Turner WA, Wolfson JM, Spengler JD (1984) Description of a continuous sulfuric acid/sulfate monitor. In: Proc National Symposium on Recent Advances in Pollutant Monitoring of Ambient Air and Stationary Sources, US EPA, #EPA-600/9–84–019, 140

    Google Scholar 

  70. Thompson KM, Koutrakis P, Brauer M, Spengler JD, Wilson WE, Burton RM (1991) Measurements of aerosol acidity: sampling frequency, seasonal variability, and spatial variation. Proceedings of the AWMA Conference, Paper No. 91–89.5

    Google Scholar 

  71. Burton RM, Wilson WE, Koutrakis P, Liu LS (1992) Comparison of aerosol acidity in urban and semi-rural environments. Proceedings of the EPA-AWMA Conference

    Google Scholar 

  72. Wilson WE, Koutrakis P, Spengler JD (1991) Diurnal variations of aerosol acidity, sulfate, and ammonia in the atmosphere. Proc of the AWMA Conference, Paper No. 91–89.9

    Google Scholar 

  73. Allen GA, Koutrakis PA(1992) Development and validation of a model for predicting short-term acid aerosol concentrations from the Harvard School of Public Health Continuous Sulfate/Thermal Speciation Monitor. Presented at the EPA/Air and Waste management Association Conference on Measurement of Toxic and Related Air Pollutants, Durham, NC, May.

    Google Scholar 

  74. Suh HH, Koutrakis P, Spengler JD (1993) Validation of personal exposure models for sulfate and aerosol strong acidity. JAWMA 43:845

    CAS  Google Scholar 

  75. Suh HH, Koutrakis P, Spengler JD (1994) Housing factors and their influence on indoor acid aerosol and gas concentrations. J Expos Anal and Environ Epidemiol (in press)

    Google Scholar 

  76. Mitchell RI, Pilcher JM (1959) Improved cascade impactor for measuring aerosol particle sizes. Ind Eng Chem 51: 1039

    Article  CAS  Google Scholar 

  77. Appel BR, Tokiwa Y, Kothny EL (1983) Sampling of carbonaceous particles in the atmosphere. Atmos Environ 17: 1787–1796

    Article  CAS  Google Scholar 

  78. Bjorseth O, Krohn C, Togersen S, Fjelstadt PE (1980) The working environment in the aluminum industry. Sampling for PNA by an alumina fluidized bed sampler. Electrochemica Acta 25: 117–124

    Article  Google Scholar 

  79. Brosset C(1979) Possible changes in aerosol composition due to departure from equilibrium conditions during sampling. Am Chem Soc Conference, Hawaii

    Google Scholar 

  80. Friedlander SK(1976) Smoke, dust and haze. John Wiley & Sons

    Google Scholar 

  81. McMurry PH, Zhang XQ(1989) Size distribution of ambient organic and elemental carbon. Aerosol Sci & Technol 10: 430–437

    Article  CAS  Google Scholar 

  82. Mercer TT, Staffrord RG (1969) Impaction from round jets. Ann Occup Hyg 12:41

    Article  CAS  Google Scholar 

  83. Mercer TT, Tillery MI, Chow HY (1968) Operating characteristics of some compressed air nebulizers. Am Ind Hyg Assoc J 29:66–78

    Article  CAS  Google Scholar 

  84. Seinfeld JH (1986) Atmospheric physics and chemistry of air pollution. John Wiley & Sons, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sioutas, C., Koutrakis, P. (1995). Methods for Measuring Atmospheric Acidic Particles and Gases. In: Kouimtzis, T., Samara, C. (eds) Airborne Particulate Matter. The Handbook of Environmental Chemistry, vol 4 / 4D. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49145-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49145-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14881-5

  • Online ISBN: 978-3-540-49145-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics