Skip to main content

Inflammation and Cell Adhesion Molecules are Involved in Radiation-Induced Lung Injury

  • Chapter

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Radiation therapy is an effective means of killing tumor cells, although this effectiveness is tempered by limitations of the normal tissue to the adverse effects of radiation. An excellent example of this is radiation treatment for thoracic tumors, in particular, lung cancers. Despite advances in the technical delivery of radiation by three-dimensional (3D) planning via computed tomography (CT), radiation-induced injury to normal lung tissue still occurs in a large proportion of treated patients. The primary endpoints for radiation-induced pulmonary toxicity include early onset pneumonitis and late onset fibrosis. A significant amount of research has produced some insight into the mechanism(s) behind this injury. This knowledge has provided potential targets for drug development that could improve the therapeutic ratio for radiation by reducing both early and late toxicity. In this article, we review and update the pathologic mechanisms underlying radiation-induced lung injury as well as potential treatments, with particular interest in cell adhesion molecules and inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stone HB, Moulder JE, Coleman CN et al (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries report of an NCI Workshop, December 3–4,2003. Radiation Research 162:711–728

    Article  PubMed  CAS  Google Scholar 

  2. Abid SH, Malhotra V, Perry MC (2001) Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol 13:242–248

    Article  PubMed  CAS  Google Scholar 

  3. Marks LB, Yu X, Vujaskovic Z et al (2003) Radiation-induced lung injury. Semin Radiat Oncol 13:333–345

    Article  PubMed  Google Scholar 

  4. Monson JM, Stark P, Reilly JJ et al (1998) Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma. Cancer 82:842–850

    Article  PubMed  CAS  Google Scholar 

  5. Rancati T, Ceresoli GL, Gagliardi G et al (2003) Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol 67:275–283

    Article  PubMed  Google Scholar 

  6. Claude L, Perol D, Ginestet C et al (2004) A prospective study on radiation pneumonitis following conformai radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol 71:175–181

    Article  PubMed  Google Scholar 

  7. Movsas B, Raffln TA, Epstein AH et al (1997) Pulmonary radiation injury. Chest 111:1061–1076

    PubMed  CAS  Google Scholar 

  8. Rodrigues G, Lock M, D’Souza D et al (2004) Prediction of radiation pneumonitis by dose — volume histogram parameters in lung cancer — a systematic review. Radiother Oncol 71:127–138

    Article  PubMed  Google Scholar 

  9. Trott KR, Herrmann T, Kasper M (2004) Target cells in radiation pneumopathy. Int J Radiat Oncol Biol Phys 58:463–469

    Article  PubMed  Google Scholar 

  10. Osterreicher J, Pejchal J, Skopek J et al (2004) Role of type II pneumocytes in pathogenesis of radiation pneumonitis: dose response of radiation-induced lung changes in the transient high vascular permeability period. Exp Toxicol Pathol 56:181–187

    Article  PubMed  CAS  Google Scholar 

  11. Rubin P, Johnston CJ, Williams JP et al (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33:99–109

    Article  PubMed  CAS  Google Scholar 

  12. Rubin P, Finkelstein J, Shapiro D (1992) Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys 24:93–101

    PubMed  CAS  Google Scholar 

  13. Roberts CM, Foulcher E, Zaunders JJ et al (1993) Radiation pneumonitis: a possible lymphocyte-mediated hypersensitivity reaction. Ann Intern Med 118:696–700

    PubMed  CAS  Google Scholar 

  14. Ward HE, Kemsley L, Davies L et al (1993) The pulmonary response to sublethal thoracic irradiation in the rat. Radiat Res 136:15–21

    Article  PubMed  CAS  Google Scholar 

  15. Vit JP, Rosselli F (2003) Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis. Oncogene 22:8645–8652

    Article  PubMed  CAS  Google Scholar 

  16. Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22:5897–5906

    Article  PubMed  CAS  Google Scholar 

  17. Gross NJ (1981) The pathogenesis of radiation-induced lung damage. Lung 159:115–125

    Article  PubMed  CAS  Google Scholar 

  18. Hallahan DE, Spriggs DR, Beckett MA et al (1989) Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA 86:10104–10107

    Article  PubMed  CAS  Google Scholar 

  19. Hallahan DE, Virudachalam S, Kuchibhotla J et al (1994) Membrane-derived second messenger regulates X-ray-mediated tumor necrosis factor alpha gene induction. Proc Natl Acad Sci USA 91:4897–4901

    Article  PubMed  CAS  Google Scholar 

  20. Chen Y, Williams J, Ding I et al (2002) Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol 12:26–33

    Article  PubMed  Google Scholar 

  21. Anscher MS, Peters WP, Reisenbichler H et al (1993) Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med 328:1592–1598

    Article  PubMed  CAS  Google Scholar 

  22. Anscher MS, Kong FM, Marks LB et al (1997) Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys 37:253–258

    Article  PubMed  CAS  Google Scholar 

  23. Anscher MS, Murase T, Prescott DM et al (1994) Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 30:671–676

    PubMed  CAS  Google Scholar 

  24. Novakova-Jiresova A, Van Gameren MM, Coppes RP et al (2004) Transforming growth factor-beta plasma dynamics and post-irradiation lung injury in lung cancer patients. Radiother Oncol 71:183–189

    Article  PubMed  CAS  Google Scholar 

  25. De Jaeger K, Seppenwoolde Y, Kampinga HH et al (2004) Significance of plasma transforming growth factor-beta levels in radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58:1378–1387

    Article  PubMed  Google Scholar 

  26. Barthelemy-Brichant N, Bosquee L, Cataldo D et al (2004) Increased IL-6 and TGF-betal concentrations in bronchoalveolar lavage fluid associated with thoracic radiotherapy. Int J Radiat Oncol Biol Phys 58:758–767

    Article  PubMed  CAS  Google Scholar 

  27. Hallahan DE, Virudachalam S (1997) Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung. Cancer Res 57:2096–2099

    PubMed  CAS  Google Scholar 

  28. Epperly MW, Guo H, Shields D et al (2004) Correlation of ionizing irradiation-induced late pulmonary fibrosis with long-term bone marrow culture fibroblast progenitor cell biology in mice homozygous deletion recombinant negative for endothelial cell adhesion molecules. In Vivo 18:1–14

    PubMed  CAS  Google Scholar 

  29. Kasper M, Koslowski R, Luther T et al (1995) Immunohistochemical evidence for loss of ICAM-1 by alveolar epithelial cells in pulmonary fibrosis. Histochem Cell Biol 104:397–405

    Article  PubMed  CAS  Google Scholar 

  30. Hallahan DE, Virudachalam S (1997) Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation. Proc Natl Acad Sci USA 94:6432–6437

    Article  PubMed  CAS  Google Scholar 

  31. Hallahan DE, Geng L, Shyr Y (2002) Effects of intercellular adhesion molecule 1 (ICAM-1) null mutation on radiation-induced pulmonary fibrosis and respiratory insufficiency in mice. J Natl Cancer Inst 94:733–741

    PubMed  CAS  Google Scholar 

  32. Nordal RA, Wong CS (2004) Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropathol Exp Neurol 63:474–483

    PubMed  CAS  Google Scholar 

  33. Ikeda Y, Ito M, Matsuu M et al (2000) Expression of ICAM-1 and acute inflammatory cell infiltration in the early phase of radiation colitis in rats. J Radiat Res (Tokyo) 41:279–291

    Article  CAS  Google Scholar 

  34. Handschel J, Prott FJ, Sunderkotter C et al (1999) Irradiation induces increase of adhesion molecules and accumulation of beta2-integrin-expressing cells in humans. Int J Radiat Oncol Biol Phys 45:475–481

    Article  PubMed  CAS  Google Scholar 

  35. Vujaskovic Z, Anscher MS, Feng QF et al (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50:851–855

    Article  PubMed  CAS  Google Scholar 

  36. Epperly M W, Sikora CA, DeFilippi SJ et al (2002) Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese Superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. Biol Blood Marrow Transplant 8:175–187

    Article  PubMed  CAS  Google Scholar 

  37. Chen Y, Okunieff P, Ahrendt SA (2003) Translational research in lung cancer. Semin Surg Oncol 21:205–219

    Article  PubMed  Google Scholar 

  38. Thornton SC, Walsh BJ, Bennett S et al (1996) Both in vitro and in vivo irradiation are associated with induction of macrophage-derived fibroblast growth factors. Clin Exp Immunol 103:67–73

    Article  PubMed  CAS  Google Scholar 

  39. Franko AJ, Sharplin J, Ghahary A et al (1997) Immunohistochemical localization of transforming growth factor beta and tumor necrosis factor alpha in the lungs of fibrosis-prone and «non-fibrosing» mice during the latent period and early phase after irradiation. Radiat Res 147:245–256

    Article  PubMed  CAS  Google Scholar 

  40. Hallahan DE, Virudachalam S, Kuchibhotla J (1998) Nuclear factor kappaB dominant negative genetic constructs inhibit X-ray induction of cell adhesion molecules in the vascular endothelium. Cancer Res 58:5484–5488

    PubMed  CAS  Google Scholar 

  41. Edwards E, Geng L, Tan J et al (2002) Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res 62:4671–4677

    PubMed  CAS  Google Scholar 

  42. Geng L, Tan J, Himmelfarb E et al (2004) A specific antagonist of the p110delta catalytic component of phosphatidylinositol 3′-kinase, IC486068, enhances radiation-induced tumor vascular destruction. Cancer Res 64:4893–4899

    Article  PubMed  CAS  Google Scholar 

  43. Tan J, Hallahan DE (2003) Growth factor-independent activation of protein kinase B contributes to the inherent resistance of vascular endothelium to radiation-induced apoptotic response. Cancer Res 63:7663–7667

    PubMed  CAS  Google Scholar 

  44. Kim D, Dan HC, Park S et al (2005) AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci 10:975–984

    Article  PubMed  CAS  Google Scholar 

  45. Parsa AT, Holland EC (2004) Cooperative translational control of gene expression by Ras and Akt in cancer. Trends Mol Med 10:607–613

    Article  PubMed  CAS  Google Scholar 

  46. Thompson JE, Thompson CB (2004) Putting the rap on Akt. J Clin Oncol 22:4217–4226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willey, C.D., Hallahan, D.E. (2008). Inflammation and Cell Adhesion Molecules are Involved in Radiation-Induced Lung Injury. In: Rubin, P., Constine, L.S., Marks, L.B., Okunieff, P. (eds) Late Effects of Cancer Treatment on Normal Tissues. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49070-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49070-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49069-2

  • Online ISBN: 978-3-540-49070-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics