Skip to main content

Medical Countermeasures to Radiation Injury

Science and Service in the Public Interest Tribute to Robert Kallman, LENT V meeting 2004

  • Chapter
Late Effects of Cancer Treatment on Normal Tissues

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 995 Accesses

Abstract

Radiation oncologists, biologists, epidemiologists, and health physicists have a long-standing interest in understanding the risk, etiology, prevention, and treatment of radiation damage to normal tissue as a consequence of exposure of healthy populations, as well as from cancer treatment. The recent threat of radiological and nuclear terrorism as a consequence of a radiological dispersion device (RDD) or improvised nuclear device (IND) has raised public awareness of the consequences of radiation exposure. Normal tissue injury results from local cellular and tissue processes directly damaged by the radiation, as well as from the response of the entire organism. The development of effective medical countermeasures to protect, mitigate, and/or treat normal tissue injury requires investigation from basic molecular mechanisms to multicellular systems to relevant animal models to clinical trials. With renewed interest and support, the radiation biology/oncology research community has a critical opportunity for scientific investigation and service to society by advancing knowledge, helping oncology patients, and enhancing the well-being of entire populations living under the threat of accidental or intentional radiation exposure.

Presented in part at the Late Effects Normal Tissues (LENT V) meeting, Rochester, NY, May 23–25, 2004.

The content and opinions within this manuscript are from the author and not the US Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagshaw MA, Kallman RF, Rubin P (1985) In memoriam. Henry Seymour Kaplan. Int J Radiat Oncol Biol Phys 11:1–3

    CAS  Google Scholar 

  2. Kaplan HS, Bagshaw MA (1957) The Stanford medical linear accelerator. III. Application to clinical problems of radiation therapy. Stanford Med Bull 15:141–151

    PubMed  CAS  Google Scholar 

  3. Ginzton EL, Nunan CS (1985) History of microwave electron linear accelerators for radiotherapy. Int J Radiat Oncol Biol Phys 11:205–216

    PubMed  CAS  Google Scholar 

  4. Rosenberg SA, Kaplan HS (1985) The evolution and summary results of the Stanford randomized clinical trials of the management of Hodgkin’s disease: 1962-1984. Int J Radiat Oncol Biol Phys 11:5–22

    PubMed  CAS  Google Scholar 

  5. Fajardo LF, Stewart JR, Cohn KE (1968) Morphology of radiation-induced heart disease. Arch Pathol 86:512–519

    PubMed  CAS  Google Scholar 

  6. Fajardo LF, Brown JM, Glatstein E (1976) Glomerular and juxta-glomerular lesions in radiation nephropathy. Radiat Res 68:177–183

    Article  PubMed  CAS  Google Scholar 

  7. Rubin P, Casarett GW (1968) Clinical radiation pathology as applied to curative radiotherapy. Cancer 22:767–778

    Article  PubMed  CAS  Google Scholar 

  8. Kallman RF, Silini G, Van Putten LM (1967) Factors influencing the quantitative estimation of the in vivo survival of cells from solid tumors. J Natl Cancer Inst 39:539–549

    PubMed  CAS  Google Scholar 

  9. Kallman RF, Rapacchietta D, Zaghloul MS (1991) Schedule-dependent therapeutic gain from the combination of fractionated irradiation plus c-DDP and 5-FU or plus c-DDP and cyclophosphamide in C3H/Km mouse model systems. Int J Radiat Oncol Biol Phys 20:227–232

    PubMed  CAS  Google Scholar 

  10. Kallman RF (1975) Animal experiments in radiotherapy I-small animals. J Can Assoc Radiol 26:15–24

    PubMed  CAS  Google Scholar 

  11. Kallman RF (1963) Recovery from radiation injury: aproposed mechanism. Nature 197:557–560

    Article  Google Scholar 

  12. Kallman RF, Silini G, Taylor HM 3rd (1966) Recuperation from lethal injury by whole-body irradiation. II. Kinetic aspects in radiosensitive BALB-c mice, and cyclic fine structure during the four days after conditioning irradiation. Radiat Res 29:362–394

    Article  PubMed  CAS  Google Scholar 

  13. Kallman RF, Silini G (1964) Recuperation from lethal injury by whole-body irradiation. I. Kinetic aspects and the relationship with conditioning dose in C57blmice. Radiat Res 22:622–642

    Article  PubMed  CAS  Google Scholar 

  14. Curran W (2002) The first investigators’ congress on radioprotection. Semin Radiat Oncol 12:1–111

    Article  Google Scholar 

  15. Penz M, Kornek GV, Raderer Met al (2001) Subcutaneous administration of amifostine: a promising therapeutic option in patients with oxaliplatin-related peripheral sensitive neuropathy. Ann Oncol 12:421–422

    Article  PubMed  CAS  Google Scholar 

  16. Koukourakis MI, Simopoulos C, Minopoulos G et al (2003) Amifostine before chemotherapy: improved tolerance profile of the subcutaneous over the intravenous route. Clin Cancer Res 9:3288–3293

    PubMed  CAS  Google Scholar 

  17. Cassatt DR, Fazenbaker CA, Kifle G et al (2003) Subcutaneous administration of amifostine (ethyol) is equivalent to intravenous administration in a rat mucositis model. Int J Radiat Oncol Biol Phys 57:794–802

    Article  CAS  Google Scholar 

  18. Miller KL, Shafman TD, Anscher MS et al (2005) Bronchial stenosis: an underreported complication of highdose external beam radiotherapy for lung cancer? Int J Radiat Oncol Biol Phys 61:64–69

    Article  Google Scholar 

  19. Stripp D, Glatstein E (2005) The good, the bad, and the ugly. Int J Radiat Oncol Biol Phys 61:3–4

    Article  Google Scholar 

  20. Dorr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61:223–231

    Article  PubMed  CAS  Google Scholar 

  21. Followill D, Geis P, Boyer A (1997) Estimates of wholebody dose equivalent produced by beam intensity modulated conformai therapy. Int J Radiat Oncol Biol Phys 38:667–672

    Article  PubMed  CAS  Google Scholar 

  22. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88

    Article  PubMed  Google Scholar 

  23. Stone HB, McBride WH, Coleman CN (2002) Modifying normal tissue damage postirradiation. Report of a workshop sponsored by the Radiation Research Program, National Cancer Institute, Bethesda, Maryland, September 6-8, 2000. Radiat Res 157:204–223

    Article  PubMed  CAS  Google Scholar 

  24. Delanian S, Balla-Mekias S, Lefaix JL (1999) Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol 17:3283–3290

    PubMed  CAS  Google Scholar 

  25. Okunieff P, Augustine E, Hicks JE et al (2004) Pentoxifylline in the treatment of radiation-induced fibrosis. J Clin Oncol 22:2207–2213

    Article  PubMed  CAS  Google Scholar 

  26. Delanian S, Porcher R, Balla-Mekias S, et al (2003) Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J Clin Oncol 21:2545–2550

    Article  PubMed  CAS  Google Scholar 

  27. Rubin P, Johnston CJ, Williams JP et al (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33:99–109

    Article  PubMed  CAS  Google Scholar 

  28. Martin M, Lefaix J, Delanian S (2000) TGF-beta 1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47:277–290

    Article  PubMed  CAS  Google Scholar 

  29. Amundson SA, Bittner M, Meltzer P et al (2001) Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat Res 156:657–661

    Article  PubMed  CAS  Google Scholar 

  30. Coleman CN, Blakely WF, Fike JR et al (2003) Molecular and cellular biology of moderate-dose (1-10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland, December 17-18, 2001. Radiat Res 159:812–834

    Article  PubMed  CAS  Google Scholar 

  31. Koana T, Takashima Y, Okada MO et al (2004) A threshold exists in the dose-response relationship for somatic mutation frequency induced by X irradiation of Drosophila. Radiat Res 161:391–396

    Article  PubMed  CAS  Google Scholar 

  32. Trotti A, Colevas AD, Setser A et al (2003) CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 13:176–181

    Article  PubMed  Google Scholar 

  33. Coleman CN, Stone HB, Alexander GA et al (2003) Education and training for radiation scientists: radiation research program and American Society of Therapeutic Radiology and Oncology Workshop, Bethesda, Maryland, May 12–14, 2003. Radiat Res 160:729–737

    Article  PubMed  Google Scholar 

  34. Stone HB, Moulder JE, Coleman CN et al (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3-4, 2003. Radiat Res 162:711–728

    Article  PubMed  CAS  Google Scholar 

  35. Brizel DM, Wasserman TH, Henke M et al (2000) Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 18:3339–3345

    PubMed  CAS  Google Scholar 

  36. Wasserman TH, Brizel DM (2001) The role of amifostine as a radioprotector. Oncology (Huntingt) 15:1349–1354; discussion 1357-1360

    CAS  Google Scholar 

  37. Hahn SM, Krishna MC, DeLuca AM et al (2000) Evaluation of the hydroxylamine Tempol-H as an in vivo radioprotector. Free Radic Biol Med 28:953–958

    Article  PubMed  CAS  Google Scholar 

  38. Metz JM, Smith D, Mick R et al (2004) A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res 10:6411–6417

    Article  PubMed  CAS  Google Scholar 

  39. Moulder JE, Fish BL, Cohen EP (2003) ACE inhibitors and All receptor antagonists in the treatment and prevention of bone marrow transplant nephropathy. Curr Pharm Des 9:737–749

    Article  PubMed  CAS  Google Scholar 

  40. Moulder JE (2004) Post-irradiation approaches to treatment of radiation injuries in the context of radiological terrorism and radiation accidents: a review. Int J Radiat Biol 80: 3–10

    Article  PubMed  CAS  Google Scholar 

  41. Delanian S, Lefaix JL (2002) Complete healing of severe osteoradionecrosis with treatment combining pentoxifylline, tocopherol and clodronate. Br J Radiol 75:467–469

    PubMed  CAS  Google Scholar 

  42. Komarov PG, Komarova EA, Kondratov RV et al (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  PubMed  CAS  Google Scholar 

  43. Komarova EA, Kondratov RV, Wang K et al (2004) Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23:3265–3271

    Article  PubMed  CAS  Google Scholar 

  44. Komarova EA, Christov K, Faerman AI et al (2000) Different impact of p53 and p21 on the radiation response of mouse tissues. Oncogene 19:3791–3798

    Article  PubMed  CAS  Google Scholar 

  45. Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  PubMed  CAS  Google Scholar 

  46. Derynck R, Zhang YE (2003) Smad-dependent and Smadindependent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  PubMed  CAS  Google Scholar 

  47. Nishioka A, Ogawa Y, Mima T et al (2004) Histopathologic amelioration of fibroproliferative change in rat irradiated lung using soluble transforming growth factorbeta (TGF-beta) receptor mediated by adenoviral vector. Int J Radiat Oncol Biol Phys 58:1235–1241

    PubMed  CAS  Google Scholar 

  48. Rabbani ZN, Anscher MS, Zhang X et al (2003) Soluble TGFbeta type II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats. Int J Radiat Oncol Biol Phys 57:563–572

    Article  PubMed  CAS  Google Scholar 

  49. Xavier S, Piek E, Fujii M et al (2004) Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem 279:15167–15176

    Article  PubMed  CAS  Google Scholar 

  50. Pellmar TC, Rockwell S (2005) Priority list of research areas for radiological nuclear threat countermeasures. Radiat Res 163:115–123

    Article  PubMed  CAS  Google Scholar 

  51. Dorr W, Noack R, Spekl K et al (2001) Modification of oral mucositis by keratinocyte growth factor: single radiation exposure. Int J Radiat Biol 77:341–347

    Article  PubMed  CAS  Google Scholar 

  52. Waselenko JK, MacVittie TJ, Blakely WF et al (2004) Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 140:1037–1051

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coleman, C.N. (2008). Medical Countermeasures to Radiation Injury. In: Rubin, P., Constine, L.S., Marks, L.B., Okunieff, P. (eds) Late Effects of Cancer Treatment on Normal Tissues. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49070-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49070-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49069-2

  • Online ISBN: 978-3-540-49070-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics