Skip to main content

Hamiltonian Resonance Theory

  • Chapter
Particle Accelerator Physics
  • 2873 Accesses

Abstract

Particle resonances in circular accelerators occur as a result of perturbation terms involving particular Fourier harmonics. That approach is based on the common knowledge that periodic perturbations of a harmonic oscillator can cause a resonance when the perturbation frequency is equal to an eigenfrequency of the oscillator. In the realm of Hamiltonian resonance theory we will be able to derive not only obvious resonant behavior but also resonant dynamics which does not necessarily lead to a loss of the beam but to a significant change of beam parameters. We also will be able to determine the strength of resonances, effectiveness, escape mechanisms, and more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wiedemann, H. (2007). Hamiltonian Resonance Theory. In: Particle Accelerator Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49045-6_13

Download citation

Publish with us

Policies and ethics