Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 71))

Abstract

Inelastic scattering always occurs when charged particles interact with the atoms of an object. Since the inelastic process is delocalized the image formed by the inelastically scattered electrons does not contain much information about the atomic structure of the specimen. Nevertheless, the inelastically scattered electrons do carry information about its elemental composition on a nanometre scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Deininger, J. Mayer: Omega energy-filtered convergent beam electron diffraction. In Electron Microscopy 1992, ed. by A. Rios, J.M. Aria, L. Megias-Megias, A. López-Gallindo (Secretariado Publ., Univ. Granada 1992) Vol.1, pp.181–182

    Google Scholar 

  2. O. Scherzer: Vorschläge zur Terminologie unrunder Elektronenlinsen. Optik 22, 314–318 (1965)

    Google Scholar 

  3. E. Plies: Proposal for an electrostatic energy filter and a monochromator. In Electron Microscopy 1978, ed. by J.M. Sturgess (Microscopical Soc. of Canada, Toronto 1978) Vol.1, pp.50–51.

    Google Scholar 

  4. H. Rose: Electrostatic energy filter as monochromator of a highly coherent electron source. Optik 85, 95–98 (1990)

    Google Scholar 

  5. R. Castaing, L. Henry: Filtrage magnétique de vitesses en microscopie électronique. J. Microscopie 3, 133–152 (1964)

    Google Scholar 

  6. M. Cotte: Recherches sur l’optique électronique. Ann. Phys. (Paris) 10, 333–405 (1938)

    Google Scholar 

  7. R. M. Henkelman, F. P. Ottensmeyer: An energy filter for biological electron microscopy. J. Micr. 102, 79–94 (1979)

    Article  Google Scholar 

  8. S. Senoussi: Etude d’un dispositif de filtrage des vitesses purement magnétique adaptable à un microscope électronique à très haute tension. Thése de 3e Cycle, Univ. Paris-Orsay (1971)

    Google Scholar 

  9. H. Rose, E. Plies: Entwurf eines fehlerarmen magnetischen Energie-Analysators. Optik 40, 336–341 (1974)

    Google Scholar 

  10. G. Zanchi, J. Ph. Pérez, J. Sevely: Adaption of a magnetic filtering device on a one megavolt electron microscope. Optik 43, 495–501 (1975)

    Google Scholar 

  11. J. Ph. Pérez, J. Sirvin, A. Séguéla, J. C. Lacaze: Étude, au premier ordre, d’une systéme dispersif, magnétique, symmétric, de type alpha. J. Physique 45, C 2, Suppl. 2, 171–179 (1984)

    Google Scholar 

  12. S. Lanio: High-resolution imaging magnetic energy filter with simple structure. Optik 73, 99–107 (1986)

    Google Scholar 

  13. W. Pejas, H. Rose: Outline of an imaging magnetic energy filter free of second-order aberrations. In Electron Microscopy 1978, ed. by J.M. Sturgess (Microscopical Soc. of Canada, Toronto 1978) Vol.1, pp.44–45

    Google Scholar 

  14. H. Rose, W. Pejas: Optimisation of imaging magnetic energy filters free of second-order aberration. Optik 54, 235–250 (1979)

    Google Scholar 

  15. D. Krahl, K.H. Herrmann, E. Zeitler: Experiments with an imaging filter in a CTEM. Proc. 39th Ann. Mtg. EMSA (San Francisco Press, San Francisco 1981) pp.366–367

    Google Scholar 

  16. S. Lanio, H. Rose, D. Krahl: Test and improved design of a corrected imaging magnetic energy filter. Optik 73, 56–68 (1986)

    Google Scholar 

  17. W. Legier: Ein modifiziertes Wiensches Filter als Elektronenmonochromator. Z. Physik 171, 424–435 (1963)

    Article  ADS  Google Scholar 

  18. H. Boersch, J. Geiger, W. Stickel: Das Auflösungsvermögen des elektrostatisch-magnetischen Energieanalysators für schnelle Elektronen. Z. Physik 180, 415–429 (1964)

    Article  ADS  Google Scholar 

  19. W. H. J. Andersen, J. Kramer: A double-focusing Wien filter as a full-image energy analyser for the electron microscope. 5th Europ. Congr. on Electron Microscopy (The Institute of Physics, Bristol 1972) pp.146–147

    Google Scholar 

  20. H. Rose: The retarding Wien filter as a high performance imaging filter. Optik 77, 26–34 (1987)

    Google Scholar 

  21. R. L. Seliger: E×B mass-separator design. J. Appl. Phys. 43, 2352–2357 (1972)

    Article  ADS  Google Scholar 

  22. R. E. Collins: The design of double focussing Wien filters. J. Vac. Sci. Technol. 10, 1106–1109 (1973)

    Article  ADS  Google Scholar 

  23. M. Kato, K. Tsuno: Numerical analysis of trajectories and aberrations of a Wien filter including the effect of fringing fields. Nucl. Instr. Meth. Phys. Res. A 298, 296–320 (1990)

    Article  ADS  Google Scholar 

  24. K. Tsuno: Aberration analysis of a Wien filter for electrons. Optik 89, 31–40 (1991)

    Google Scholar 

  25. M. Haider, W. Bernhardt, H. Rose: Design and test of an electric and magnetic dodecapole lens. Optik 63, 9–23 (1982)

    Google Scholar 

  26. O. L. Krivanek, A. J. Gubbens, N. Dellby: Developments in EELS instrumentation for spectroscopy and imaging. Microsc. Microanal. Microstruct. 2, 315–332 (1991)

    Article  Google Scholar 

  27. W. Glaser: Über geometrisch-optische Abbildungen durch Elektronenstrahlen. Z. Physik 80, 451–464 (1933)

    Article  ADS  Google Scholar 

  28. O. Scherzer: Berechnung der Bildfehler dritter Ordnung nach der Bahnmethode. In Beiträge zur Elektronenoptik, ed. by H. Busch and E. Brüche (Barth, Leipzig 1937) pp. 33–41

    Google Scholar 

  29. H. Rose: Hamiltonian magnetic optics. Nucl. Instr. Meth. Phys. Res. A 258, 374–401 (1987)

    Article  ADS  Google Scholar 

  30. P. A. Sturrock: Perturbation characteristic functions and their application to electron optics. Proc. Roy. Soc. (London) A 210, 269–289 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Zeitler: Analysis of an imaging magnetic energy filter. Nucl. Inst. Meth. Phys. Res. A 298, 234–246 (1990)

    Article  ADS  Google Scholar 

  32. A. J. Dragt: Elementary and advanced Lie algebra methods with applications to accelerator design, electron microscopes, and light optics. Nucl. Instr. Meth. Phys. Res. A 258, 339–354 (1987)

    Article  ADS  Google Scholar 

  33. M. Herzberger: Modern Geometrical Optics (Interscience, New York 1958)

    Google Scholar 

  34. E. H. Linfoot: Recent Advances in Optics (Oxford Univ. Press, Oxford 1955)

    Google Scholar 

  35. P. A. Sturrock: Static and Dynamic Electron Optics (Cambridge Univ. Press, Cambridge 1955) p. 60

    MATH  Google Scholar 

  36. H. Rose, E. Plies: Correction of aberrations in electron optical systems with curved axes. In Image Processing and Computer-aided Design in Electron Optics, ed. by P. W. Hawkes (Academic, London 1973) pp.344–369

    Google Scholar 

  37. H. Rose: Aberration correction of homogeneous magnetic deflection fields. Optik 51, 15–38 (1978)

    Google Scholar 

  38. R. Degenhardt, H. Rose: A compact aberration-free imaging filter with inside energy selection. Nucl. Instr. Meth. Phys. Res. A 298, 171–178 (1990)

    Article  ADS  Google Scholar 

  39. E. Plies, H. Rose: Über die axialen Bildfehler magnetischer Ablenksysteme mit krummer Achse. Optik 34, 171–190 (1971)

    Google Scholar 

  40. G. Hoffstätter, H. Rose: Gauge invariance in the eikonal method. Nucl. Instr. Meth. Phys. Res. A 328, 398–401 (1993)

    Article  ADS  Google Scholar 

  41. S. Uhlemann, H. Rose: The MANDOLINE filter — a new high-performance imaging filter for sub-eV EFTEM. Optik 96, 163–178 (1994)

    Google Scholar 

  42. R. Herzog: Ablenkung von Kathoden- und Kanalstrahlen am Rande eines Kondensators, dessen Streufeld durch eine Blende begrenzt ist. Z. Physik 97, 596–602 (1935)

    Article  ADS  MATH  Google Scholar 

  43. E. Plies: Korrektur der Öfmungsfehler elektronenoptischer Systeme mit krummer Achse und durchgehend astigmatismusfreien Gaußschen Bahnen. Optik 40, 141–160 (1974)

    Google Scholar 

  44. P. W. Hawkes, E. Kasper: Principles of Electron Optics (Academic, London 1989) Vol.2

    Google Scholar 

  45. H. Wollnik: Optics of Charged Particles (Academic, London 1987)

    Google Scholar 

  46. A. Abramowitz, A. Stegun: Handbook of Mathematical Functions (Dover, New York 1972) p.1004

    MATH  Google Scholar 

  47. A. J. Dragt: Lectures on Nonlinear Orbit Dynamics. In Physics of High Energy Particle Accelerators, AIP Conf. Proc. 87 (1982).

    Google Scholar 

  48. S. Lanio: Optimierung abbildender Energiefilter für die analytische Elektronenmikroskopie. Dissertation D 17, TH Darmstadt (1986).

    Google Scholar 

  49. S. Kujawa, D. Krahl, H. Niedrig, E. Zeitler: Second-rank aberrations of a magnetic imaging filter: measurement and correction. Optik 86, 39–46 (1990)

    Google Scholar 

  50. I. Fromm, L. Reimer, R. Rennekamp: Investigation and use of plasmon losses in energy-filtering transmission electron microscopy. J. Micr. 166, 257–271 (1992)

    Article  Google Scholar 

  51. H. Boersch: Ein Elektronenfilter für Elektronenmikroskopie und Elektronenbeugung. Optik 5, 436–450 (1949)

    Google Scholar 

  52. G. Möllenstedt, O. Rang: Die elektrostatische Linse als hochauflösendes Geschwindigkeitsfilter. Z. angew. Physik 3, 187–189 (1951)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rose, H., Krahl, D. (1995). Electron Optics of Imaging Energy Filters. In: Reimer, L. (eds) Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48995-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48995-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14055-0

  • Online ISBN: 978-3-540-48995-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics