Skip to main content

Imaging Spectroscopy for the Non-invasive Investigation of Paintings

  • Chapter
International Trends in Optics and Photonics

Part of the book series: Springer Series in OPTICAL SCIENCES ((SSOS,volume 74))

Summary

This chapter describes a portable apparatus for the non-invasive examination of paintings based on a lead sulphide vidicon camera that works in the 400–2000 nm range. Imaging spectroscopy is achieved by collecting a multi-wavelength sequence of near-monochromatic images in the investigated area. After amplitude normalization and geometrical registration, the reflectance spectra can be reconstructed. Pigment identification may be made by comparing these spectra with those of a database of reference pigments and paintings. More detailed investigations on the pigment layers are afforded by appropriate algorithms, which supply distribution maps that can easily be correlated with the visual aspect of the painting. Examples of applications on test objects and on a XVI century Italian painting are reported. A brief review is also given of the modern infrared solid-state cameras that are most suited to replace the noisy and instable lead sulphide vidicon cameras in these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunt, G.R. (1977) Spectral Signatures of Particulate Minerals in the Visible and Near Infrared. Geophysics 42, 501–513

    Article  ADS  Google Scholar 

  2. Bacci, M., Picollo, M., Radicati, B., Bellucci, R. (1994) Spectroscopic Imaging and Non-Destructive Reflectance Investigations Using Fiber Optics. In: Non-Destructive Testing of Works of Art, 4th International Conference at Berlin, Germany, 162–174

    Google Scholar 

  3. Bacci, M., Picollo, M. (1996) Non-Destructive Spectroscopic Detection of Cobalt ( II) in Paintings and Glasses. Stud. in Conserv. 41, 136–144

    Article  Google Scholar 

  4. Lyon, R.A. (1934) Infra-Red Radiations Aid Examination of Paintings. Tech. Stud. Field Fine Arts 2, 203–212

    Google Scholar 

  5. Rawlins, F.I.G. (1938) A Novel Infra-Red Camera for Art Gallery Work. Museums J. 38, 186–187

    Google Scholar 

  6. Farnsworth, M. (1938) Infra-Red Absorption of Paint Materials. Tech. Stud. Field Fine Arts 7, 88–98

    Google Scholar 

  7. Keck, S. (1941) A Use of Infra-Red Photography in the Study of Technique. Tech. Stud. Field Fine Arts 9, 145–152

    Google Scholar 

  8. Bridgman, C.F., Gibson, H.L. (1963) Infrared Luminescence in the Photographic Examination of Paintings and Other Art Objects. Stud. Conserv. 8, 77–83

    Article  Google Scholar 

  9. Olin, C.H., Carter, T.G. (1970) Infrared Color Photography of Paintings Materials. In: Technical Papers from 1968 Through 1970, IIC—America Group, New York, 83–88

    Google Scholar 

  10. Matteini, M., Moles, A., Tiano, P. (1978) Infrared Colour Films as an Auxiliary Tool for the Investigation of Paintings. In: ICOM Committee for Conservation, 5th Triennial Meeting at Zagreb, Yugoslavia, 1–19

    Google Scholar 

  11. Eastman Kodak Company (1986) Applied Infrared Photography. Technical publication No. M-28

    Google Scholar 

  12. Moon, T., Schilling, M.R., Thirkettle, S. (1992) A Note on the Use of False-Color Infrared Photography in Conservation. Stud. Conserv. 37, 42–52

    Article  Google Scholar 

  13. van Asperen de Boer, J.R.J. (1969) Reflectography of Paintings Using an Infra-Red Vidicon Television System. Stud. Conserv. 14, 96–118

    Article  Google Scholar 

  14. van Asperen de Boer, J.R.J. (1974) A Note on the Use of an Improved Infrared Vidicon for Reflectography of Paintings. Stud. Conserv. 19, 97–99

    Article  Google Scholar 

  15. Bacci, M., Baronti, S., Casini, A., Lotti, F., Picollo, M., Casazza, O. (1992) Non-Destructive Spectroscopic Investigations on Paintings Using Optical Fibers. Proc. Mat. Res. Soc. Symp. 267, 265–283

    Article  Google Scholar 

  16. Kossolapov, A. (1993) An Improved Vidicon TV Camera for IRReflectrography. In: ICOM Committee for Conservation, 10th Triennial Meeting at Washington, DC, USA, 25–31

    Google Scholar 

  17. Burmester, A., Bayerer, F. (1993) Towards Improved Infrared Reflectograms. Stud. Conserv. 38, 145–154

    Google Scholar 

  18. Saunders, D., Cupitt, J. (1995) Elucidating Reflectograms by Superimposing Infra-Red and Colour Images. Nat. Gallery Tech. Bull. 16, 61–65

    Google Scholar 

  19. Bertani, D., Cetica, M., Poggi, P., Puccioni, G., Buzzegoli, E., Kunzelman, D., Cecchi, S. (1990) A Scanning Device for Infrared Reflectography. Stud. Conserv. 35, 113–117

    Article  Google Scholar 

  20. Walmsley, E., Fletcher, C., Delaney, J.K. (1992) Evaluation of System Performance of Near-Infrared Imaging Devices. Stud. Conserv. 37, 120–131

    Article  Google Scholar 

  21. Aldrovandi, A., Bertani, D., Cetica, M., Matteini, M., Moles, A., Poggi, P., Tiano, P. (1988) Multispectral Image Processing of Paintings. Stud. Conserv. 33, 154–159

    Article  Google Scholar 

  22. Norton, P.R. (1991) Infrared Image Sensors. Optic. Eng. 30, 1649–1663

    Article  Google Scholar 

  23. Walmsley, E., Metzger, C., Fletcher, C., Delaney, J.K. (1993) Evaluation of Platinum Silicide Cameras for Use in Infrared Reflectrography. In: ICOM Committe for Conservation, 10th Triennial Meeting at Washington, DC, USA, 57–62

    Google Scholar 

  24. Baffa, C., Gennari, S., Hunt, L.K., Lis F., Tofani, G., Vanzi, L. (1995) TIRGO and Its Instrumentation. Optic. Eng. 34, 2731–2735

    Article  ADS  Google Scholar 

  25. Dereniak, E.L., Boreman, G.D. (1996) Infrared Detectors and Systems. John Wiley, New York

    Google Scholar 

  26. Casini, A., Lotti, F., Picollo, M., Stefani, L., Buzzegoli, E. (1999) Image Spectroscopy Mapping Technique for Non-Invasive Analysis of Paintings. Stud. Conserv. 44, 39–48

    Article  Google Scholar 

  27. Bacci, M., Picollo, M., Radicati, B. (1996) Fiber Optics Reflectance Spectroscopy: A Non-destructive and Non-invasive Technique for the Identification of Blue Pigments. In: Non-Destructive Testing of Works of Art, 5th International Conference at Budapest, Hungary, 89–100

    Google Scholar 

  28. Geladi, P., Grahn, H. (1996) Multivariate Image Analysis. Wiley, New York

    Google Scholar 

  29. Baronti, S., Casini, A., Lotti, F., Porcinai, S. (1998) Multispectral Imaging System for the Mapping of Pigments in Works of Art by Use of Principal-Component Analysis. Appl. Optics 37, 1299–1309

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casini, A., Lotti, F., Picollo, M. (1999). Imaging Spectroscopy for the Non-invasive Investigation of Paintings. In: Asakura, T. (eds) International Trends in Optics and Photonics. Springer Series in OPTICAL SCIENCES, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48886-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48886-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14212-7

  • Online ISBN: 978-3-540-48886-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics