Skip to main content

All-Optical Regeneration for Global-Distance Fiber-Optic Communications

  • Chapter
  • 625 Accesses

Part of the book series: Springer Series in OPTICAL SCIENCES ((SSOS,volume 74))

Summary

As optical amplifiers have opened new perspectives for ultra-highcapacity transmission of lightwave signals over transoceanic distances (more than 100 Gbit/s over 10 000 km) fundamental limits are being felt. Such limits come from the combined effects of amplifier noise accumulation, fiber dispersion, fiber nonlinearities, and inter-channel interactions, contributing to various forms of signal degradation. In order to overcome these impairments and meet ever-growing transmission capacity needs, another technology revolution will soon be required. Promising developments concern in-line all-optical regeneration, which makes it possible to transmit optical data over virtually unlimited distances, without any electronic buffering. After recalling the basic principle of optical regeneration in lightwave systems, we describe the state of the art in experimental implementation. We also discuss the alternative offered by electronic regeneration, and highlight the advantages of the all-optical approach, with its technology challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desurvire, E., The golden age of optical fiber amplifiers, Physics Today, 21–27, January 1994

    Google Scholar 

  2. Desurvire, E., Erbium-Doped Fiber Amplifiers, Principles and Applications, Wiley, New York, 1994

    Google Scholar 

  3. Hecht, J., Planned super-internet banks on wavelength-division multiplexing, Laser Focus World, p. 103, May 1998

    Google Scholar 

  4. Runge, P., Undersea lightwave systems. Optics and Photonics News, Vol. 1, N. 11, 9 (1990);

    Article  ADS  Google Scholar 

  5. Kerfoot, F., Marra, W., Undersea Fiber-optic networks: past, present and future, IEEE J. Select. Areas in Comm., Vol. 16, N. 7, 1220 (1998)

    Article  Google Scholar 

  6. Submarine Fiber-Optic Comm. Syst., Vol.5, N.6, June 1997, Information Gatekeepers, Inc.

    Google Scholar 

  7. Submarine Fiber-Optic Comm. Syst., Vol. 5, N. 11, November 1997

    Google Scholar 

  8. Bergano, N., et al., Proc. Conf. on Optical Fiber Communications (OFC’97)., paper PD16, Optical Society of America, Washington DC, 1997; ibid., (OFC’98), paper PD12

    Google Scholar 

  9. Taga, H., et al., Proc. Conf. on Optical Fiber Communications (OFC’98), paper PD16, Optical Society of America, Washington DC, 1998.; Suzuki, M., et al., ibid, paper PD17

    Google Scholar 

  10. Agrawal, G.P., Nonlinear fiber optics, Quantum electronics principles and applications, 2nd edn., Academic Press, San Diego, 1995

    Google Scholar 

  11. Mollenauer, L.F., Soliton transmission speeds greatly multiplied by sliding vfrequency-guiding filters, Optics and Photonics News, p.15, April 1994, and references therein

    Google Scholar 

  12. Mollenauer, L.F., et al., Demonstration of soliton WDM transmission at 6 and 7 × 10 Gbit/s, error-free over transoceanic distances, Electron. Lett., Vol. 32, N. 5, 471 (1996)

    Article  Google Scholar 

  13. Nijhof, J.H.B., et al., Stable soliton-like propagation in dispersion-managed systems with net anomalous, zero and normal dispersion, Electron. Lett., Vol. 33, N. 20, 1726 (1997)

    Article  Google Scholar 

  14. Turytsin, S.K., et al., Dispersion-managed solitons and optimization of the dispersion management, Optical Fiber Technology, Vol. 4, N. 4, 384 (1998)

    Article  ADS  Google Scholar 

  15. Nijhof, J.H.B., et al., Energy enhancement of dispersion-managed solitons and WDM, Electron. Lett., Vol.34, N.5, 481 (1998), and references therein

    Google Scholar 

  16. Devaney, J.F.L., et al., Soliton collisions in dispersion-managed wavelengthdivision-multiplexed systems, Optics Lett., Vol. 22, N. 22, 1695 (1997)

    Article  ADS  Google Scholar 

  17. Morita, I., et al., VI0 Gbit/s single-channel soliton transmission over 8600 km using periodic dispersion compensation, Electron. Lett., Vol. 34, N. 19, 1863 (1998)

    Article  Google Scholar 

  18. LeGuen, D., et al., Narrowband 640 Gbit/s soliton DWDM trnsmission over 1200 km of standard fibre with 100 km, —21 dB amplifier spans, Electron. Lett., Vol. 34, N. 24, 2345 (1998)

    Article  Google Scholar 

  19. Mikkelsen, B., et al., All-optical noise reduction capability of intrferometric wavelength converters, Electron. Lett., Vol. 32, N. 6, 566 (1996)

    Article  Google Scholar 

  20. Chiaroni, D., et al., 10 Gbit/s optically regenerated NRZ transmission experiment over 20,000 kms with 140 km repeater spacing, Proc. Conference on Optical Fiber Communications, (OFC’98), paper PD15, Optical Society of America, Washington DC, 1998

    Google Scholar 

  21. Dupas, A., et al., 2R all-optical regenerator assessment at 2.5 Gbit/s over 3600 km using only standard fibre, Electron.Lett., Vol. 34, N. 25, 2424 (1998)

    Article  Google Scholar 

  22. Kubota, H., Nakazawa, M., Soliton transmission control in time and frequency domains, IEEE J. Quantum Electron., Vol. 29, N. 7, 2189 (1993);

    Article  ADS  Google Scholar 

  23. a) Nakazawa, M., et al., 10 Gbit/s soliton data transmission over one million kilometers, Electron. Lett., Vol.2, N.14, 1270 (1991)

    Google Scholar 

  24. Nakazawa, M., et al., Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains, Electron. Lett., Vol. 29, N. 9, 729 (1993)

    Article  Google Scholar 

  25. Smith, N.J., et al., Soliton dynamics in the presence of phase modulators, Optics Comm., Vol. 102, 324 (1993)

    Article  ADS  Google Scholar 

  26. Smith, N.J., Doran, N.J., Evaluating the capacity of phase-modulatorcontrolled long-haul soliton transmission, Optical Fiber Technology, Vol. 1, N. 3, 218 (1995)

    Article  ADS  Google Scholar 

  27. Leclerc, O., et al., Synchronous WDM soliton regeneration: towards 80160 Gbit/s transoceanic systems, Optical Fiber Technology, Vol. 3, N. 2, 97 (1997)

    Article  ADS  Google Scholar 

  28. Nakazawa, M., et al., Infinite-distance soliton transmission with soliton controls in time and frequency domains, Electron. Lett., Vol. 28, N. 12, 1099 (1992)

    Article  Google Scholar 

  29. Georges, T., Perturbation theory for the assessment of soliton transmission control, Optical Fiber Technology, Vol. 1, N. 2, 97 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  30. Leclerc, O., et al., Robustness of 80 Gbit/s (4 × 20 Gbit/s) regenerated WDM soliton transoceanic transmission to practical system implementation, Optical Fiber Technology, Vol. 3, N. 2, 117 (1997)

    Article  ADS  Google Scholar 

  31. Desurvire, E., et al., Synchronous in-line regeneration of wavelength-division multiplexed soliton signals in optical fibers, Optics Lett., Vol. 21, N. 14, 1026 (1996)

    Article  ADS  Google Scholar 

  32. Georges, T., Study of the non-Guassian timing jitter statistics induced by soli-ton interaction and filtering, Optics Comm, N. 123, 617 (1996)

    Article  ADS  Google Scholar 

  33. Leclerc, O., et al., Synchronously modulated soliton systems: a simple analysis of timing-jitter statistics and bit-error rate, Proc. Conf. on Optical Fiber Communications (OFC’98), paper ThI2, p. 290, Optical Society of America, Washington DC, 1998

    Google Scholar 

  34. Pincemin, E., et al., Feasibility of 1 Tbit/s (25 × 40 Gbit/s) transoceanic optically-regenerated systems, submitted to Optics Lett.

    Google Scholar 

  35. Dany, B., et al., A transoceanic 4 × 40 Gbit/s system combining dispersion-managed soliton transmission and new “black-box” in-line optical regeneration, Electron. Lett., Vol. 35, N. 5, 418 (1999)

    Article  Google Scholar 

  36. Widdowson, T., Ellis, A.D., II Gbit/s soliton transmission over 125 Mm, Electron. Lett., Vol. 30, N. 22, 1866 (1994)

    Article  Google Scholar 

  37. Brun-Maunand, E., et al., Parametric study of chromatic dispersion influence in 20 Gbit/s, 20 Mm regenerated soliton systems having up to 140 km amplifier spacing, Electron. Lett., Vol. 32, N. 22, 1022 (1996)

    Google Scholar 

  38. Aubin, G., et al., Record 20 Gbit/s 200 km repeater span transoceanic soliton transmission using in-line remote pumping, IEEE Photonics Technology Lett., Vol. 8, N. 9, 1267 (1996)

    Article  ADS  Google Scholar 

  39. Nakazawa, M., et al., 100 Gbit/s WDM (20 Gbit/s x5 channels) soliton transmission over 10 000 km using in-line synchronous modulation and optical filtering, Electron. Lett., Vol. 33, N. 14, 1233 (1998)

    Article  Google Scholar 

  40. Nakazawa, M., et al., 100 Gbit/s WDM (20 Gbit/s x8 channels) soliton transmission over 10 000 km using in-line synchronous modulation and optical filtering, Electron. Lett., Vol. 34, N. 1, 103 (1998).

    Article  Google Scholar 

  41. Widdowson, T., et al., Soliton shepherding: all-optical active soliton control over global distances, Electron. Lett., Vol. 30, N. 12, 990 (1994)

    Article  Google Scholar 

  42. Bigo, S., et al., All-optical fiber signal processing for solitons communications, IEEE J. Select. Topics on Quantum Electron., Vol. 3, N. 5, 1208 (1997)

    Article  Google Scholar 

  43. Bigo, S., et al., All-optical regenerator for 20 Gbit/s transoceanic transmission, Electron. Lett., Vol. 33, N. 11, 975 (1997)

    Article  Google Scholar 

  44. Leclerc, O., et al., 2 ×20 Gbit/s, 3500 km regenerated WDM soliton transmission with all-optical Kerr fiber modulation, Electron. Lett., Vol. 34, N. 2, 199 (1998)

    Article  MathSciNet  Google Scholar 

  45. Harvey, H.J., An alternative derivation of soliton transmission control, Paper ThC2, p94, Proc. Top. Meeting on Optical Amplifiers and their Applications (OAA’94), Optical Society of America, Washington DC, 1994

    Google Scholar 

  46. Leclerc, O., et al., Polarisation-independent InP push-pull Mach-Zehnder modulator for 20 Gbit/s soliton regeneration, Electron. Lett., Vol. 34, N. 10, 1011 (1998)

    Article  Google Scholar 

  47. Aubin, G., et al., 40 Gbit/s OTDM soliton transmission over transoceanic distances, Electron. Lett., Vol. 32, N. 24, 2188 (1996)

    Article  Google Scholar 

  48. Suzuki, K., et al., 40 Gbit/s single channel optical soliton transmission over 70 000 km using in-line synchronous modulation and optical filtering, Electron. Lett., Vol. 34, N. 1, 98 (1998)

    Article  Google Scholar 

  49. Leclerc, O., et al., 40 Gbit/s polarization-independent, push—pull InP MachZehnder modulator for all-optical regeneration, Postdeadline Paper 35, Proc. Optical Fiber Communications (OFC’99), Optical Society of America, Washington DC, 1999

    Google Scholar 

  50. Mikkelsen, B., et al., All-optical noise reduction capability of interferometric wavelength converters, Electron. Lett., Vol. 32, N. 6, 566 (1996)

    Article  Google Scholar 

  51. Jourdan, A., et al., Key building blocks for high-capacity WDM photonic transport networks, IEEE J. Select. Areas in Commun., Vol. 16, N. 7, 1 (1998);

    Article  Google Scholar 

  52. Lavigne, B., et al., Performance and system margins at 10 Gbit/s of an optical repeater for long haul NRZ transmission, in Proc. European Conference on Optical Communications (ECOC’98), p.559

    Google Scholar 

  53. Dupas, A., et al., 2R all-optical regenerator assessment at 2.5 Gbit/s over 3600 km using only standard fibre, Electron. Lett., Vol. 34, N. 25, 2424 (1998)

    Article  Google Scholar 

  54. Wolfson, D., et al., All-optical 2R regeneration based on interferometric structure incorporating semiconductor optical amplifiers, Electron. Lett., Vol. 35, N. 1, 59 (1999)

    Article  Google Scholar 

  55. Sartorius, B., et al., All-optical clock recovery module based on self-pulsating DFB laser, Electron. Lett., Vol. 34, N. 17, 1664 (1998);

    Article  Google Scholar 

  56. Sartorius, B., et al., Analysis and compression of pulses emitted from an all-optical clock recovery module, Electron. Lett., Vol. 34, N. 24, 2344 (1998)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Desurvire, E., Leclerc, O. (1999). All-Optical Regeneration for Global-Distance Fiber-Optic Communications. In: Asakura, T. (eds) International Trends in Optics and Photonics. Springer Series in OPTICAL SCIENCES, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48886-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48886-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14212-7

  • Online ISBN: 978-3-540-48886-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics