Skip to main content

Heterostructure, Confined-Field Lasers

  • Chapter
Integrated Optics: Theory and Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 33))

  • 284 Accesses

Abstract

In Chap. 11, it was demonstrated that confining the optical field to the region of the laser in which the inverted population exists results in a substantial reduction of threshold current density and a corresponding increase in efficiency. As early as 1963, it was proposed that heterojunctions could be used to produce a waveguiding structure with the desired property of optical confinement [12.1, 2]. At about the same time, others proposed using a heterojunction laser structure not for optical field confinement, but to produce higher carrier injection efficiency at the p-n junction, and to confine the carriers to the junction region [12.3,4]. Actually, all three of these mechanisms are present in a heterostructure laser, and their combined effects result in a device that is vastly superior to the basic p-n homojunction laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Diemer, B. Böiger: Physica 29, 600 (1963)

    Article  Google Scholar 

  2. T. Pecany: Phys. Stat. Sol. 6, 651 (1964)

    Article  ADS  Google Scholar 

  3. H. Kroemer: Proc. IEE 51, 1782 (1963)

    Article  Google Scholar 

  4. Zh. I. Alferov: Sov. Phys.-Solid State 7, 1919 (1966)

    Google Scholar 

  5. I. Hayashi, M.B. Panish, P. Foy: IEEE J. QE-5, 211 (1969)

    Article  Google Scholar 

  6. H. Kressel, H. Nelson: RCA Rev. 30, 106 (1969)

    Google Scholar 

  7. Zh. I. Alferov, V. Andreev, E. Portnoi, M. Trukhan: Sov. Phys. — Semiconduct. 3, 1107 (1969)

    Google Scholar 

  8. K. Sheger, A. Milnes, D. Feught: Proc. Int. Conf. Chem. Semicond. Heterojunction Layer Structures, Budapest (Hung. Ac. Sci., Budapest 1970) Vol. 1, p. 73

    Google Scholar 

  9. Q.H.F. Vrehen: J. Phys. Chem. Solids 29, 129 (1968)

    Article  ADS  Google Scholar 

  10. H. Yonezu, I. Sakuma, Y. Nannich: Jpn. J. Appl. Phys. 9, 231 (1970)

    Article  ADS  Google Scholar 

  11. A. Yariv, R.C.C. Leite: Appl. Phys. Lett. 2, 173 (1963)

    Article  Google Scholar 

  12. H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Part B, Materials and Operating Characteristics (Academic, New York 1978) pp. 109–132

    Google Scholar 

  13. A. McWhorter: Solid-State Electron. 6, 417 (1963)

    Article  ADS  Google Scholar 

  14. H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Part A. Fundamental Principles (Academic, New York 1978) pp. 54–57

    Google Scholar 

  15. M. Ettenberg: Appl. Phys. Lett. 27, 652 (1975)

    Article  ADS  Google Scholar 

  16. N. Chinone, R. Ito, O. Nakada: J. Appl. Phys. 47, 785 (1976)

    Article  ADS  Google Scholar 

  17. S. Oshiba, Y. Kawai: Tech. Digest OSA/IEEE Optical Fiber Comm. Conf. (OFC’90) (San Francisco, CA 1990) p. 9

    Google Scholar 

  18. P.K. Cheo: Fiber Optics and Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ 1990) p. 239

    Google Scholar 

  19. D. Greenaway, G. Harbeke: Optical Properties and Band Structure of Semiconductors (Pergamon, Oxford 1968) p. 67

    Google Scholar 

  20. D.N. Payne, W.A. Gambling: Electron Lett 11, 176 (1975)

    Article  Google Scholar 

  21. See, for example, R.D. Mauer: Proc. IEEE 61, 452 (1973)

    Article  Google Scholar 

  22. H. Kressel (ed.): Semiconductor Devices for Optical Communication, 2nd ed., Top. Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg, New York 1982) pp. 285–289

    Google Scholar 

  23. M. Kawahara, S. Oshiga, A. Matoba, Y. Kawai, Y. Tamura: Proc. OSA/IEEE Conference on Optical Fiber Communication (OFC) (1987) p. ME-1

    Google Scholar 

  24. E. Rezek: Proc. OSA Topical Meeting on Semiconductor Lasers, Albuquerque, NM (1987)

    Google Scholar 

  25. J.C. Dyment: Appl. Phys. Lett. 10, 84 (1967)

    Article  ADS  Google Scholar 

  26. L.A. D’Asaro: J. Lumin. 7, 310 (1973)

    Article  Google Scholar 

  27. H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, Y. Nannicki: Jpn. J. Appl. Phys. 12, 1585 (1973)

    Article  ADS  Google Scholar 

  28. T. Tsukada: J. Appl. Phys. 45, 4899 (1974)

    Article  ADS  Google Scholar 

  29. M. Nakamura: IEEE Trans. CAS-26, 1055 (1979)

    Google Scholar 

  30. N. Chinone: J. Appl. Phys. 48, 3237 (1977)

    Article  ADS  Google Scholar 

  31. K. Seki, T. Kamiya, H. Yanai: Trans. IECE (Jpn.) E-62, 73 (1979)

    ADS  Google Scholar 

  32. W.O. Schlosser: Bell Syst. Tech. J. 52, 887 (1973)

    Google Scholar 

  33. W.T. Tsang, R.A. Logan, M. Ilegems: Appl. Phys. Lett. 32, 311 (1978)

    Article  ADS  Google Scholar 

  34. T. Kobayashi, H. Kawaguchi, Y. Furukawa: Jpn. J. Appl. Phys. 16, 601 (1977)

    Article  ADS  Google Scholar 

  35. H. Namizaki: IEEE J. QE-11, 427 (1975)

    Article  Google Scholar 

  36. K. Aiki, M. Nakamura, T. Kuroda, J. Umeda: Appl. Phys. Lett. 48, 649 (1977)

    Article  ADS  Google Scholar 

  37. H. Yonezu: Jpn. J. Appl. Phys. 16, 209 (1977)

    Article  ADS  Google Scholar 

  38. D. Botez: Appl. Phys. Lett. 33, 872 (1978)

    Article  ADS  Google Scholar 

  39. C.S. Hong, Y.Z. Liu, J.J. Coleman, P.D. Dapkus: Digest of Technical Papers, OSA/IEEE Topical Meeting on Integrated Optics, Asilomar, CA (5–8, January 1982) p. FC2

    Google Scholar 

  40. I.P. Kaminow, R.S. Tucker: “Mode-Controlled Semiconductor Lasers”, in Guided-Wave Optoelectronics, edited by T. Tamir (Springer, Berlin, Heidelberg, New York 1988) pp. 211–263

    Chapter  Google Scholar 

  41. C.E. Hurwitz, J.A. Rossi, J.J. Hsieh, C.M. Wolfe: Appl. Phys. Lett. 27, 241 (1975)

    Article  ADS  Google Scholar 

  42. L.A. Koszi, A.K. Chin, B.P. Segner, T.M. Shen, N.K. Dutta: Electronics Lett, 21, 1209 (1985)

    Article  Google Scholar 

  43. A. Antreasyn, C.Y. Chen, R.A. Logan: Electronics Lett. 21, 405 (1985)

    Article  Google Scholar 

  44. A. Antreasyn, S.G. Napholtz, D.P. Wilt, P.A. Garbinski: IEEE J. QE-22, 1064 (1986)

    Article  Google Scholar 

  45. M. Ishii, et al.: Electronics Lett. 23, 179 (1987)

    Article  ADS  Google Scholar 

  46. M. Ishii, K. Kamon, M. Shimazu, M. Mihara, H. Kumabe, K. Isshiki: Optoelectronics -Devices and Technologies 2, 83 (1987)

    Google Scholar 

  47. M. Kawabe, H. Kotani, K. Masuda, S. Namba: Appl. Phys. Lett. 26, 46 (1975)

    Article  ADS  Google Scholar 

  48. K. Aiki, M. Nakamura, J. Umeda: Appl. Phys. Lett. 29, 506 (1976)

    Article  ADS  Google Scholar 

  49. M. Krakowski, R. Blondeau, J. Ricciardi, J. Hirtz, M. Razeghi, B. deCremoux: Proc. IEEE/OSA conf. on Optical Fiber Communications and Integrated Guided Wave Optics (OFC/IGWO’86), Atlanta, GA (22–24, Feb, 1986) p. TUJ3

    Google Scholar 

  50. P. Petroff, R.L. Hartman: Appl. Phys. Lett. 23, 469 (1973)

    Article  ADS  Google Scholar 

  51. J.R. Baird, G.E. Pittman, J.F. Leezer: Proc. 1966 Symposium on GaAs (Inst. of Physics, London 1967) p. 113

    Google Scholar 

  52. H. Yonezu, I. Sakuma, T. Kamejima, M. Ueno, K. Nishida, Y. Nannicki, I. Hayashi: Appl. Phys. Lett. 24, 18 (1974)

    Article  ADS  Google Scholar 

  53. R. Ito, H. Nakashima, S. Kishino, O. Nakada: IEEE J. QE-11, 551 (1975)

    Article  Google Scholar 

  54. B.C. DeLoach, B.W. Haki, R.L. Hartman, L.A. D’Asaro: Proc. IEEE 61, 1042 (1973)

    Article  Google Scholar 

  55. R.L. Hartman, N.E. Schumaker, R.W. Dixon: Appl. Phys. Lett. 31, 756 (1977)

    Article  ADS  Google Scholar 

  56. H. Kressel, M. Ettenberg, I. Ladany: Appl. Phys. Lett. 32, 305 (1978)

    Article  ADS  Google Scholar 

  57. S. Oshiba, Y. Kawai: Electron. Lett. 23, 843 (1987)

    Article  ADS  Google Scholar 

  58. J. Buus, R. Plastow: IEEE J. QE-21, 614 (1985)

    Article  Google Scholar 

  59. S. Kobayashi, T. Kimura: IEEE Spectrum, May 1984, pp. 26–33;

    Google Scholar 

  60. Y.C Zhang, Z.X. Qin, S.L. Wu, L.J. Wang, D.E. Lee: Fiber and Integrated Optics 8, 99 (1989)

    Article  Google Scholar 

  61. J.K. Butler, (ed.): Semiconductor Injection Lasers (IEEE Press, New York 1980)

    Google Scholar 

  62. H.C Casey Jr., M.B. Panish: Heterostructure Lasers (Academic, New York 1978)

    Google Scholar 

  63. H. Kressel, (ed.): Semiconductor Devices for Optical Communication, 2nd ed., Topics Appl. Phys. Vol. 39 (Springer, Berlin, Heidelberg, New York 1982) Chap. 2

    Google Scholar 

  64. H. Kressel, J.K. Butler: Semiconductor Lasers and Heterojunction LEDs (Academic, New York 1977)

    Google Scholar 

  65. T. Tamir, (ed.): Guided Wave Optoelectronics (Springer, Berlin, Heidelberg, New York 1988) Chap. 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (1991). Heterostructure, Confined-Field Lasers. In: Integrated Optics: Theory and Technology. Springer Series in Optical Sciences, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48730-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48730-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53305-4

  • Online ISBN: 978-3-540-48730-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics