Skip to main content

Remote sensing of clouds using linearly and circularly polarized laser beams: techniques to compute signal polarization

  • Chapter
Light Scattering Reviews 3

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Polarization parameters of the radiation field scattered by clouds are needed for developing remote sensing methods for microphysical clouds properties. Using polarization, investigators may, firstly, upgrade information capacity of signals and, secondly, develop polarization-based methods to discriminate a useful signal. The very first calculations to find information content of visible radiation polarization scattered by a cloud were performed at the beginning of the 1970s (see Hansen, 1971; Hovenier, 1971; Kattawar and Plass, 1972). Hansen with the aid of the adding-doubling method and Kattawar and Plass on the base of the Monte Carlo method evaluated multiple-scattered parameters of polarization as a supplementary to the radiance of radiation reflected and transmitted by clouds. Their interest was focused on the problem of passive remote sounding of cloud parameters. For the problem of sunlight reflection, the aforementioned calculations have shown that the polarization degree is more sensitive to cloud microstructure than radiance. This is connected with the fact that the peculiarities of the angular distribution of polarization are far less subjected to smoothing upon multiple scattering than those of radiance. This underlies the techniques of studying microphysical properties of clouds and ice clouds composition and of distinguishing ice clouds from water-droplet clouds from the measured degree of polarization (for example, Hansen and Hovenier, 1974; Breon and Goloub, 1998; Chepfer et al., 1998;Kokhanovsky and Weichert, 2002;Mishchenko et al., 2002, 2006; Kokhanovsky, 2003; Liou et al., 2000;Sun et al., 2006;Goloub et al., 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balin, Yu. S., G. O. Zadde, V. E. Zuev, G. G. Matvienko, I. V. Samokhvalov, and V. W. Shamanaev, 1974: Lidar investigation of polarization characteristics of meteorolog-ical formations, Proc. Int. Conf.’ structure and General Circulation of the Upper and Lower Atmospheres and Possible Anthropogenic Perturbations’, Melbourne, 186–191.

    Google Scholar 

  • Bissonnette, L. R., P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, and I. N. Polonsky, 1995: LIDAR multiple scattering from clouds, Appl. Phys. B 60, 355–362.

    Article  Google Scholar 

  • Breon, F.-M., and P. Goloub, 1998: Cloud droplet effective radius from space-borne polarization measurements, Geophys. Res. Lett. 25, 1879–1883.

    Article  Google Scholar 

  • Bruscaglioni, P., A. Ismaelli, G. Zaccanti, M. Gai, and M. Gurioli, 1995: Polarization of lidar return from water clouds. Calculations and laboratory scaled measurements, Opt. Rev. 2, 312–318.

    Article  Google Scholar 

  • Cameron, B. D., M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cote, 1998: Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium, Optics Lett. 23, 485–487.

    Article  CAS  Google Scholar 

  • Carswell, A. I., and S. R. Pal, 1980: Polarization anisotropy in lidar multiple scattering from clouds, Appl. Opt. 19, 4123–4126.

    Google Scholar 

  • Chaikovskaya, L. I., 1991: About formation of parameters of polarization of light fields in scattering media, Light Scattering and Absorption in Natural and Artificial Dispersion Media, Minsk: Institute of Physics, BSSR Acad. Sci., 111–140 (in Russian).

    Google Scholar 

  • Chaikovskaya, L. I., 2002: Polarization estimation in the propagation of a narrow polarized beam through a multiply scattering medium, Eighth International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. Proc SPIE, Zherebtsov, G. A., G. G. Matvienko, V. A. Banakh, V. V. Koshelev, Eds, Vol. 4678, 248–256.

    Google Scholar 

  • Chaikovskaya, L. I., and E. P. Zege, 2003: Theory for the sounding of multiply scattering media with a bi-static arbitrary polarized lidar systems, Proceedings of SPIE 5397, 228–231.

    Google Scholar 

  • Chaikovskaya, L. I., and E. P. Zege, 2004: Theory of polarized lidar sounding including multiple scattering, JQSRT 88, 21–35.

    CAS  Google Scholar 

  • Chaikovskaya, L., and E. Zege, 2005: Backscattering patterns in the polarized lidar sounding of strongly scattering media, in: A Borovoi, A. G. (ed.), MUSCLE XIII. Proceedings of SPIE Vol. 5829, 246–254.

    Google Scholar 

  • Chandrasekhar, S., 1960: Radiative Transfer, New York: Dover.

    Google Scholar 

  • Chepfer, H., G. Brogniez, and Y. Fouquart, 1998: Cirrus clouds microphysical properties deduced from POLDER observations, JQSRT 60, 375–390.

    CAS  Google Scholar 

  • Czerwinski, G., U.G. Oppel, and S. M. Prigarin, 2006: Monte Carlo study of a pulsed bistatic LIDAR retrieval method for particle size in water clouds, in: MUSCLE XIV (4–7 October 2005, Quebec, Canada). Book of abstracts 159–171.

    Google Scholar 

  • Davis, A., D.M. Winker, A. Marshak, J.D. Spinhirne, R.F. Cahalan, S. Love, S.H. Mel, and W.J. Wiscombe, 1997: Retrieval of physical and optical cloud thicknesses from space-borne and wide-angle lidar, in: Advances in Atmospheric Remote Sensing with Lidar., A. Ansmann, R, Neuber, P. Rairoux, and U. Wadinger (eds), Heidelberg, Springer-Verlag, 193–196.

    Google Scholar 

  • Deirmendjan, D., 1962: Electromagnetic Scattering on Spherical Polydispersion, New York, Elsvier.

    Google Scholar 

  • Dogariu, M., and T. Asakura, 1993: Polarization-dependent backscattering patterns from weakly scattering media, J. Optics 24, 271–278.

    Article  Google Scholar 

  • Domke, H., 1975: Transfer of polarized light in an isotropic medium. Biorthogonality and the solution of transfer problems in semi-infinite media, JQSRT 15, 681–694.

    Google Scholar 

  • Domke, H., and V. V. Ivanov, 1975: Asymptotics of the Green’s function of the polarized radiation transfer equation, Astr. J. 52, 1034–1037.

    Google Scholar 

  • Eloranta, E.V., 1972: The calculation of doubly scattered lidar returns from homogeneous clouds, IV Conference on Laser Radar Studies of the Atmosphere. Abstr., Tucson, Arizona.

    Google Scholar 

  • Goloub, P., M. Herman, H. Chepfer et al., 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument, J. Geophys. Res. 105, 14,747–14,759.

    Article  Google Scholar 

  • Gorodnichev, E. E., A. I. Kuzovlev, and D. B. Rogozkin, 1998: Diffusion of circularly polarized light in a disordered medium with large-scale inhomogeneities, Zh. Exp. Teor. Fis. 68, 21–26.

    CAS  Google Scholar 

  • Gorodnichev, E. E., A. I. Kuzovlev, and D. B. Rogozkin, 1999: Propagation of circularly polarized light in media with large-scale inhomogeneities, Zh. Exp. Teor. Fis. 88, 421–432.

    CAS  Google Scholar 

  • Gorodnichev, E. E., A. I. Kuzovlev, and D. B. Rogozkin, 2000: Propagation of a narrow beam of polarized light in a random medium with large-scale inhomogeneities, Laser Physics 10, 1236–1243.

    Google Scholar 

  • Gorodnichev, E. E., A. I. Kuzovlev, and D. B. Rogozkin, 2006: Multiple scattering of polarized light in turbid media with large particles, Light Scattering Reviews 2: Single and Multiple Light Scattering. Kokhanovsky, A. A. (ed), Chichester: Praxis Publishing, 291–338.

    Google Scholar 

  • Hansen, J. E., 1971: Multiple scattering of polarized light in planetary atmosphere. Part II. Sunlight reflected by terrestrial water clouds, J. Atm. Sci. 28, 1400–1426.

    Google Scholar 

  • Hansen, J. E., and J. W. Hovenier, 1974: Interpretation of the polarization of Venus, J. Atm. Sci. 27, 265–281.

    Article  Google Scholar 

  • Houston, J. D., and A. I. Carswell, 1978: Four-component polarization measurements of lidar atmospheric scattering, Appl. Opt. 17, 614–620.

    Google Scholar 

  • Hovenier, J. W., 1971: Multiple scattering of polarized light in planetary atmosphere, Astron. Astrophys. 13, 7–29.

    Google Scholar 

  • Hovenier, J. W., and C. V. M. van der Mee, 1983: Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere, Astron. Astroph. 128, 1–16.

    Google Scholar 

  • Hu, Y-X., D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, 2001: Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study, JQSRT 70, 569–579.

    CAS  Google Scholar 

  • Hu, Y-X., P. Yang, B. Lin, G. Gibson and C. Hostetler, 2003: Discriminating between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study, JQSRT 79-80, 757–764.

    CAS  Google Scholar 

  • Ishimaru, A., 1978: Wave Propagation and Scattering in Random Media, vol. 1, Chapter 9, New York: Academic Press.

    Google Scholar 

  • Ishimoto, H., and K. Masuda, 2002: A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam, JQSRT 72, 467–483.

    CAS  Google Scholar 

  • Kagan, R. L., and M. I. Yudin, 1956: Approximate solution of the equation of light scattering, Izv. AN SSSR, Ser. Geophys. N8, 968–975.

    Google Scholar 

  • Katsev, L. I., E. P. Zege, A. S. Prikhach, and I. N. Polonsky, 1997: Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems, JOSA, A 14, 1338–1346.

    Google Scholar 

  • Kattawar, G. W., and G. N. Plass, 1972: Degree and direction of polarization of multiple scattered light, Appl. Opt. 11, 2851–2865.

    Article  Google Scholar 

  • Kaul, B. V., O. A. Krasnov, A. L. Kuznetsov et al., 1997a: Lidar investigations of particles orientation in crystal clouds, Opt. Atm. Ok. 10, 191–201

    Google Scholar 

  • Kaul, B. V., Yu. Arshinov, D. Romashov, I. Samokhvalov, Ch. Werner, J. Streicher, H. Herrmann, U. Oppel, and H. Krasting, 1997b: Crystal Clouds, Tomsk: Institute of Atmospheric Optics, Russian Academy of Sciences.

    Google Scholar 

  • Kaul, B. V., D. N. Romashov, and I. V. Samokhvalov, 2001: Of the advantage of use of laser radiation circular polarization in sounding crystal clouds, Opt. Atm. Ok. 14, 687–691.

    Google Scholar 

  • Kaul, B. V., I. V. Samokhvalov, and S. N. Volkov, 2004: Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar, Appl. Opt. 43, 6620–6628.

    Article  Google Scholar 

  • Kim, A. D., and M. Moscoso, 2002: Backscattering of circularly polarized pulses, Optics Lett. 27, 1589–1591.

    Article  Google Scholar 

  • Kokhanovsky, A. A., 2003: Polarization Optics of Random Media, Chichester: Praxis Publishing.

    Google Scholar 

  • Kokhanovsky, A. A., and R. Weichert, 2002: Determination of the droplet effective size and optical depth of cloudy media from polarimetric measurements: Theory, Appl. Opt. 41, 3650–3658.

    Article  Google Scholar 

  • Kolev, I., B. Tatarov, N. Kolev, and B. Kaprielov, 2006: Observation of multiple scattering effects in low tropospheric clouds by polarization lidar with variable field-of-view, in: MUSCLE XIV (4–7 October 2005, Quebec, Canada). Book of abstracts, 3–14.

    Google Scholar 

  • Kurchakov, A.V., 1960: About optical properties of atmosphere and surface of the planet Mars, Vestnik LGU 2, N7, 154–163.

    Google Scholar 

  • Kuzmina, L., and M. V. Maslennikov, 1979: Asymptotic characteristics of polarized radiation field at small absorption, Dokl. AN SSSR, 244, 62–66.

    Google Scholar 

  • Lenoble, J. (ed), 1985: Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, Hampton, VA: Deepak Publishing.

    Google Scholar 

  • Liou, K.N., 1971: Time-dependent multiple backscattering, J. Atm. Sci. 28, 824–827.

    Google Scholar 

  • Liou, K.N., 1972: On depolarization of visible light from water clouds for a monostatic lidar, J. Atm. Sci. 29, 1000–1003.

    Google Scholar 

  • Liou, K.N., and H. Lahore, 1974: Laser sensing of cloud composition: a backscattered depolarization technique, J. Appl. Meteor. 13, 257–263.

    Article  Google Scholar 

  • Liou, K. N., and R. M. Scotland, 1971: Multiple backscattering and depolarization from water clouds for a pulsed lidar system, J. Atm. Sci. 28, 772–784.

    Article  Google Scholar 

  • Liou, K. N., Y. Takano, and P. Yang, 2000: Light scattering and radiative transfer in ice crystal clouds: applications to climate research, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Mishchenko, M. I., J. W. Hovenier, and L. D. Travis (eds), New York: Academic Press, 438–441.

    Google Scholar 

  • Look, D. C., and Y. R. Chen, 1994: Comparison of linearly and circularly polarized light scattered in the interval from 0° till 90° angles, AIAA Pap., N2093, 1–11.

    Google Scholar 

  • Mannoni, A., C. Flesia, P. Bruscaglioni, and A. Ismaelli, 1996: Multiple scattering from Xhebyshev particles: Monte Carlo simulations for backscattering in lidar geometry, Appl. Opt. 35, 7151–7164.

    Google Scholar 

  • Mishchenko, M. I., and J. W. Hovenier, 1995: Depolarization of light backscattered by randomly oriented nonspherical particles, Optics Lett. 20, 1356–1358.

    CAS  Google Scholar 

  • Mishchenko, M. I., and K. Sassen, 1998: Depolarization of lidar returns by small ice crystals: an application to contrails, Geoph. Res. Lett. 25, 309–312.

    Article  Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles, Cambridge, UK: Cambridge University Press, Part III, Chapter 9.

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2006: Multiple Scattering of Light by Particles. Cambridge, UK: Cambridge University Press, Chapters 13, 14.

    Google Scholar 

  • Oppel, U. G., 2005: Diffusion patterns of a pulsed laser beam seen by a monostatic and a bistatic CCD lidar, in: Borovoi, A. G. (ed.), MUSCLE XIII. Proceedings of SPIE 5829, 193–208.

    Google Scholar 

  • Oppel U. G., M. Hirschberger, and M. Wengenmayer, 2006: Simulation of the azimuthal dependence of cross-polarized lidar returns and its relation to optical depth and a comparison with measurements by N. Roy, G. Roy, L.R. Bissonnette, and J.-R. Simard, in: MUSCLE XIV (4–7 October 2005, Quebec, Canada). Book of abstracts. 27–39.

    Google Scholar 

  • Pal, S. L., and A. I. Carswell, 1973: Polarization properties of lidar backscattering from clouds, Appl. Opt. 12, 1530–1535.

    Google Scholar 

  • Platt, C. M. R., 1978: Lidar backscatter from horizontal ice crystal plates, J. Appl. Meteor. 17, 482–488.

    Google Scholar 

  • Polonsky, I. N., and A.B. Davis, 2006: Extending wide-angle imaging lidar capability from overcast to clear skies, in: MUSCLE XIV (4–7 October 2005, Quebec, Canada), Book of abstracts, 43–49.

    Google Scholar 

  • Polonsky, I. N., E. P. Zege, and I. L. Katsev, 2001: Lidar sounding of warm clouds and determination of their microstructure parameters, Izv. AN SSSR, FAO 37, 624–632.

    Google Scholar 

  • Prigarin, S. M., A. G. Borovoi, P. Bruscaglioni, A. Cohen, I. A. Grishin, U. Oppel, and T. B. Zhuravleva, 2005: Monte Carlo simulation of radiation transfer in optically anisotropic clouds, Proc. SPIE 5829, 88–94.

    Google Scholar 

  • Romashov, D. N., and R. F. Rakhimov, 1993: Orientation determination of axisymmetric prolate particles by data of polarized sensing, Opt. Atm. Ok. 6, 891–898.

    Google Scholar 

  • Roy, G., L. Bissonnette, Ch. Bastille, and G. Vallee, 1999: Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: Theory and experimental validation, Appl. Opt. 38, 5202–5211.

    Article  CAS  Google Scholar 

  • Roy, N., and G. Roy, 2006: Influence of multiple scattering on lidar depolarization measurements with an ICCD camera, in: MUSCLE XIV (4–7 October 2005, Quebec, Canada), Book of abstracts, 17–26.

    Google Scholar 

  • Roy, N., G. Roy, L. R. Bissonnette, and J.-R. Simard, 2004: Measurement of the azimuthal dependence of cross-polarized lidar returns and its relation to optical depth, Appl. Opt. 43, 2777–2785.

    Article  Google Scholar 

  • Rozenberg, G.V., 1958: Light field mode in the depth of weakly absorbing scattering medium and some potentialities of spectroscopy, Opt. Spektr. 5, 440–449.

    Google Scholar 

  • Ryan, J. S., and A. I. Carswell, 1978: Laser beam broadening and depolarization in dense fogs, JOSA 68, 900–908.

    Google Scholar 

  • Ryan, J. S., S. R. Pal, and A. I. Carswell, 1979: Laser backscattering from dense waterdroplet clouds, JOSA 69, 60–67.

    Google Scholar 

  • Samokhvalov, I.V., 1979: Double scattering approximation of a lidar equation for inhomogeneous atmosphere, Optics Lett. 4, 12–15.

    Google Scholar 

  • Samokhvalov, I.V., 1980: Double scattering effect for polarization parameters of signals in laser sounding clouds, Izv. AN SSSR, FAO 16, 591–600.

    Google Scholar 

  • Samokhvalov, I. V., and V. S. Shamanaev, 1982: Laser identification of drop and crystal clouds, Izv. AN SSSR, FAO 18, 1050–1056.

    Google Scholar 

  • Sassen, K., 1974: Depolarization of laser light backscattered by artificial clouds. J. Appl. Meteor. 13, 923–933.

    Google Scholar 

  • Sassen, K., 2000: Lidar backscatter depolarization technique for cloud and aerosol research, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Mishchenko, M. I., J. W. Hovenier, and L. D. Travis (eds), New York: Academic Press, 393–416.

    Google Scholar 

  • Sobolev, V.V., 1956: Transfer of Radiant Energy in Atmospheres of Stars and Planets, Chapter 10, Moscow, State Publishing House of Technical Theoretical Literature.

    Google Scholar 

  • Sun, W., N. G. Loeb, and P. Yang, 2006: On the retrieval of ice cloud particle shapes from POLDER measurements, JQSRT 101, 435–447.

    CAS  Google Scholar 

  • Tynes, H., G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, 2001: Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations, Appl. Opt. 40, 400–412.

    Article  CAS  Google Scholar 

  • van de Hulst, H. C., 1961: Light Scattering by Small Particles. New York: Wiley.

    Google Scholar 

  • van de Hulst, H.C., 1980: Multiple Light Scattering. Tables, Formulas and Applications. vol. 2, SanDiego: Academic Press.

    Google Scholar 

  • Vasilkov, A. P., T. V. Kondranin, and Eu. V. Myasnikov, 1990: Determinition of vertical dependence of the scattering coefficient from polarization characteristics of backscattering light at pulse remote sensing of the ocean, Izv. AN SSSR, FAO 26, 224–230.

    Google Scholar 

  • Vergun, V. V., M. V. Kabanov, G. P. Kokhanenko, and V. A. Krutikov, 1988: Degradation and depolarization of propagating optical pulse at large optical depths in scattering medium. Opt. Atm. Ok. 1, 97–99.

    Google Scholar 

  • Winker, D. M., J. Pelon, 2003: The CALIPSO mission. IGARSS’03. Proceedings. 2003 IEEE International, vol. 2, 1329–1331.

    Google Scholar 

  • Woodard, R., R. L. Collins, R. S. Disselkamp et al., 1998: Circular depolarization lidar measurements of cirrus clouds. Proc. 19th Int. Laser Radar Conf., NASA Conf. Publ. NASA/CP-1998-207671/PT1, 47–50.

    Google Scholar 

  • Zege, E. P., and L. I. Chaikovskaya, 1985: Approximate equations of polarized radiation transfer in media with highly anisotropic scattering, Izv. AN SSSR, FAO 10, 1043–1049.

    Google Scholar 

  • Zege, E. P., and L. I. Chaikovskaya, 1996: New approach to the polarized radiative transfer problem, JQSRT 55, 19–31.

    CAS  Google Scholar 

  • Zege, E. P., and L. I. Chaikovskaya, 1999: Polarization of multiple-scattered lidar return from clouds and ocean water, JOSA 16, 1430–1438.

    Article  Google Scholar 

  • Zege, E. P., and L. I. Chaikovskaya, 2000: Approximate theory of linearly polarized light propagation through a scattering medium, JQSRT 66, 413–435.

    CAS  Google Scholar 

  • Zege, E., A. Ivanov, and I. Katsev, 1991: Image Transfer through a Scattering Medium, Berlin: Springer-Verlag.

    Google Scholar 

  • Zege, E. P., I. L. Katsev, and I. N. Polonsky, 1993: Multicomponent approach to light propagation in clouds and mists, Appl. Opt. 32, 2803–2812.

    Google Scholar 

  • Zege, E. P., I. L. Katsev, and I. N. Polonsky, 1995: Analytical solution to LIDAR return signals from clouds with regard to multiple scattering, Appl. Phys. B 60, 345–353.

    Article  Google Scholar 

  • Zege, E. P., I. L. Katsev, and I. N. Polonsky, 1998: Power and polarization of lidar return from warm and crystal clouds with multiple scattering. Analytical approach. Conference on Light Scattering by Nonsperical Particles: Theory, Measurements, and Applications. New York: American Meteorological Society, 203–206.

    Google Scholar 

  • Zege, E. P., L. I. Chaikovskaya, I. L. Katsev, and A. S. Prikhach, 1999: Fast code to compute polarized radiation transfer in the atmosphere-ocean and atmosphere-earth systems. Int. Geosc. Rem. Sens. Symp. IEEE, Hamburg, Germany, Proceedings CD-ROM.

    Google Scholar 

  • Zuev, V. E., G. M. Krekov, G. G. Matvienko, and A. I. Popkov, 1976: Study of polarization parameters of backscatter signals in the laser sounding of clouds, Laser Sounding of the Atmosphere, Moscow: Nauka, 2–9–46.

    Google Scholar 

  • Zuev, V. E., G. M. Krekov, and M. M. Krekova, 1983: Polarization structure of backscattering by waterdrop and crystal clouds, Izv. AN SSSR, FAO 19, 595–602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Chaikovskaya, L.I. (2008). Remote sensing of clouds using linearly and circularly polarized laser beams: techniques to compute signal polarization. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 3. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48546-9_6

Download citation

Publish with us

Policies and ethics