Skip to main content

Computational Characterization and Identification of Core Promoters of MicroRNA Genes in C. elegans, H. sapiens and A. thaliana

  • Conference paper
Book cover Systems Biology and Regulatory Genomics (RSB 2005, RRG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4023))

Included in the following conference series:

  • 546 Accesses

Abstract

MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional regulation. Although many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism of microRNA genes is not well understood. To elucidate the transcriptional regulation of microRNA genes, we study and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo sapiens and Arabidopsis thaliana. Specifically, we show that the known microRNA genes in these species have the same type of promoters as the protein-coding genes. To further characterize the promoters of miRNA genes, we develop a miRNA core promoter prediction method, called common query voting (CoVote). We applied this new method to identify putative core promoters of most known microRNA genes in the three model species of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)

    Article  Google Scholar 

  2. Bohnsack, M.T., Czaplinski, K., Gorlich, D.: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2), 185–191 (2004)

    Article  Google Scholar 

  3. Carrington, J.C., Ambros, V.: Role of microRNAs in plant and animal development. Science 301(5631), 336–338 (2003)

    Article  Google Scholar 

  4. Houbaviy, H.B., Dennis, L., Jaenisch, R., Sharp, P.A.: Characterization of a highly variable eutherian microRNA gene. RNA 11, 1245–1257 (2005)

    Article  Google Scholar 

  5. Frank, E., Witten, I.H.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publisher Inc., San Francisco (1999)

    Google Scholar 

  6. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T.: Identification of novel genes coding for small expressed RNAs. Science 294(5543), 853–858 (2001)

    Article  Google Scholar 

  7. Lau, N.C., Lim, L.P., Weinstein, E.G., Bartel, D.P.: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543), 858–862 (2001)

    Article  Google Scholar 

  8. Lee, R.C., Ambros, V.: An extensive class of small rnas in caenorhabditis elegans. Science 294(5543), 862–864 (2001)

    Article  Google Scholar 

  9. Lee, R.C., Feinbaum, R.L., Ambros, V.: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854 (1993)

    Article  Google Scholar 

  10. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., Kim, V.N.: The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956), 415–419 (2003)

    Article  Google Scholar 

  11. Lee, Y., Jeon, K., Lee, J.T., Kim, S., Kim, V.N.: MicroRNA. EMBO J. 21(17), 4663–4670 (2002)

    Article  Google Scholar 

  12. Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., Kim, V.N.: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23(20), 4051–4060 (2004)

    Article  Google Scholar 

  13. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., Kutay, U.: Nuclear export of microRNA precursors. Science 303(5654), 95–98 (2004)

    Article  Google Scholar 

  14. Quinlan, J.R.: C4.5: Programs for Machine Learning. MK (1993)

    Google Scholar 

  15. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., Ruvkun, G.: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772), 901–906 (2000)

    Article  Google Scholar 

  16. Schlkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  17. Shahmuradov, I.A., Gammerman, A.J., Hancock, J.M., Bramley, P.M., Solovyev, V.V.: PlantProm: a database of plant promoter sequences. Nucleic Acids Res. 31(1), 114–117 (2003)

    Article  Google Scholar 

  18. Smale, S.T., Kadonaga, J.T.: The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479 (2003)

    Article  Google Scholar 

  19. Waibel, F., Filipowicz, W.: U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res. 18(12), 3451–3458 (1990)

    Article  Google Scholar 

  20. Wang, G., Yu, T., Zhang, W.: WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar. Nucleic Acids Res. 33(Web Server issue), W412–416 (2005)

    Article  Google Scholar 

  21. Wang, Y., Stumph, W.E.: RNA polymerase II/III transcription specificity determined by TATA box orientation. Proc. Natl. Acad. Sci. U S A 92(19), 8606–8610 (1995)

    Article  Google Scholar 

  22. Wightman, B., Ha, I., Ruvkun, G.: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5), 855–862 (1993)

    Article  Google Scholar 

  23. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., Carrington, J.C.: Expression of Arabidopsis miRNA genes. Plant Physiol. 138(4), 2145–2154 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eleazar Eskin Trey Ideker Ben Raphael Christopher Workman

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zhou, X., Ruan, J., Wang, G., Zhang, W. (2007). Computational Characterization and Identification of Core Promoters of MicroRNA Genes in C. elegans, H. sapiens and A. thaliana . In: Eskin, E., Ideker, T., Raphael, B., Workman, C. (eds) Systems Biology and Regulatory Genomics. RSB RRG 2005 2005. Lecture Notes in Computer Science(), vol 4023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48540-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48540-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48293-2

  • Online ISBN: 978-3-540-48540-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics