Skip to main content

Significance and Assessment of the Biological Stability of Drinking Water

  • Chapter

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5 / 5B))

Abstract

Biologically-stable drinking water does not support the multiplication of micro-organisms in drinking water distribution systems. Such multiplication (regrowth) adversely affects water quality, e.g. by the presence of opportunistic pathogens, coliforms, increased heterotrophic colony counts, development of invertebrates. Disinfection is not effective against biofilms and sediments, which play a key role in regrowth, and cleaning methods are labor intensive. Regrowth therefore should be prevented by strictly limiting the concentration of compounds serving as energy sources for microorganisms. Growth measurements with selected pure bacterial cultures are used for assessing the concentration of easily assimilable organic carbon (AOC) in drinking water. Regrowth of heterotrophic bacteria is very limited in water supplies in the Netherlands at AOC concentrations below 10 µg of acetate-C equivalents per liter. The concentration of biodegradable organic carbon (BDOC), which is assessed as the reduction in DOC concentration in samples incubated with an assemblage of bacteria, did not decrease below the level of 0.2 mg/I in drinking water during distribution in Paris. Biological filtration processes are needed to remove the concentration of growth promoting compounds for obtaining biostable drinking water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ATP:

adenosinetriphosphate (ng/1)

AOC:

assimilable organic carbon (µg acetate C equivalents/1)

b:

die-off rate (h−1)

BDOC:

biodegradable dissolved organic carbon (mg/1)

C:

organic carbon

CFU:

colony forming units

D:

pipe diameter (internal) (m)

DBA:

diluted broth agar

DOC:

dissolved organic carbon (mg/1)

GAC:

granular activated carbon

K s :

substrate saturation constant (µg C/1)

N max :

maximum colony count (CFU/ml)

Re:

Reynolds number (dimensionless)

S :

substrate concentration (µg C/l)

S min :

substrate concentration at which net growth rate equals zero (threshold substrate concentration) (µg C/l)

V :

growth rate (h−1)

V max :

maximum growth rate (h−1)

υ :

flow rate (m/s)

ν′:

kinematic viscosity of water (m2/s)

Y :

bacterial growth yield (CFU/µg C)

References

  1. Engel HWB, Berwald LG and Havelaar AH (1980) Tubercle 61: 21

    Article  CAS  Google Scholar 

  2. Schoenen D, Striegler B, Titulaer P (1985). Off Gesundh Wes 47: 32

    CAS  Google Scholar 

  3. Tobin JOH, Beare J, Dunnil MS (1980). Lancet: 118

    Google Scholar 

  4. Schulze-Robbecke R and Fischeder R (1989) Zbl Hyg 188: 385

    CAS  Google Scholar 

  5. Burke V, Robinson J, Gracey M, Petersen D and Partridge K (1984) Appl. Environ Microbiol 48: 361

    CAS  Google Scholar 

  6. LeChevallier MW (1990). J. Am. Wat. Works Assoc. 82: 74

    CAS  Google Scholar 

  7. O’Connor JT, Nash L and Edwards AB (1975) J. Am. Water Works Assoc. 67: 113

    Google Scholar 

  8. Lee SH, O’Connor JT and Banerji SK (1980) J. Am. Water Works Assoc. 72: 636

    CAS  Google Scholar 

  9. Allen MJ, Taylor RH and Geldreich EE (1980) J. Am. Water Works Assoc. 72: 614

    Google Scholar 

  10. Ridgway HE and Olson BH (1981) Appl. Environ. Microbiol. 41: 274

    CAS  Google Scholar 

  11. Nagy LA and Olson BH (1985) Proc. Am Water Works Water Quality Technology Conference, Houston, Tex. American Water Works Association. Denver.

    Google Scholar 

  12. LeChevallier MW, Babcock TM and Lee RG (1987) Appl. Environ. Microbiol. 53: 2714

    CAS  Google Scholar 

  13. Donlan RM and Pipes WO (1988). J. Am. Water Works Assoc. 80: 70

    CAS  Google Scholar 

  14. Colboume JS and Brown DA (1979) J. Appl. Bacteriol. 47: 223

    Article  Google Scholar 

  15. Schoenen D and Schöler HF (1985) DVGW Schriftenreihe Wasser nr. 37. Deutscher Verein des Gas-und Wasserfaches, Frankfurt, Germany.

    Google Scholar 

  16. Rook J (1974) J. Soc. Water Treatment Exam. 23: 234

    Google Scholar 

  17. Herson DS McGonigle B, Payer MA and Baker KH (1987) Appl. Environ. Microbiol. 53: 1178

    CAS  Google Scholar 

  18. LeChevallier MW, Cawthon CD and Lee RG (1988) Appl. Environ. Microbiol. 54: 649

    CAS  Google Scholar 

  19. Rittmann BE and Snoeyink VL (1984) J. Am. Water Works Assoc. 76: 106

    CAS  Google Scholar 

  20. Schellart JA (1986) Water Supply 4: 217

    CAS  Google Scholar 

  21. Van der Kooij D and Hijnen WAM (1985) J. Francais d’Hydrology 16: 201

    Article  Google Scholar 

  22. Servais P, Billen G and Rego JV (1985) Appl. Environ. Micrbiol 49: 1448

    CAS  Google Scholar 

  23. Van der Kooij D and Hijnen WAM (1988) Appl. Environ. Microbiol. 54: 2842

    Google Scholar 

  24. Baylis, JR, Chase, ES Cox CR Ellms JW Emerson CA Knouse HV and Streeter HW (1930) Am. J. Publ. Hlth 20: 485

    Article  CAS  Google Scholar 

  25. Martin RS et al (1982) J. Am. Water Works Assoc. 74: 34

    Google Scholar 

  26. Smalls LC and Greaves GF (1968) J. Soc. Water Treatment Exam 17: 445

    Google Scholar 

  27. Schalekamp M (1969) Gas, Wasser, Abwasser 49: 253

    CAS  Google Scholar 

  28. Dietlicher K (1970) Schrftr. Ver. Wasser- Boden- Lufthyg. 31: 1

    Google Scholar 

  29. Hijnen WAM, Koning D, Kruithof JC and Van der Kooij D (1988) Water Supply 6: 265

    CAS  Google Scholar 

  30. Van der Kooij D, Visser A and Hijnen WAM (1982) J. Am. Water Works Assoc. 74: 540

    Google Scholar 

  31. Werner P (1985) Vom Wasser 65: 257

    CAS  Google Scholar 

  32. Stanfield G and Jago PH (1987) Report PRU 1628-M, Water Research Centre, Medmenham. U.K.

    Google Scholar 

  33. Servais P, Billen G, Hascoet MC (1987) Water Res. 21: 445

    Article  CAS  Google Scholar 

  34. Joret JC and Levy Y (1986) Trib. Cebedeau. 39: 3

    CAS  Google Scholar 

  35. Ribas F, Frias J and Lucena F (1991) J. Appl. Bacteriol. 71: 371

    Article  CAS  Google Scholar 

  36. Servais P, Anzil A, Ventresque C (1989) Appt Environ. Microbiol. 55: 2723

    Google Scholar 

  37. Block JC, Mathieu J, Servais P, Fontvielle D, Werner P (1992) Wat. Res. 26: 481

    Article  CAS  Google Scholar 

  38. Huck PM (1990) J Am Water Works Assoc 82: 78

    CAS  Google Scholar 

  39. BSI, 1988. British Standard 6920. British Standards Institution, United Kingdom.

    Google Scholar 

  40. DVGW, 1990. Technische Regeln Arbeitsblatt W270. DVGW Eschborn. Germany.

    Google Scholar 

  41. Van der Kooij D, Hijnen WAM (1981) Appl. Environ. Microbiol. 41: 216

    Google Scholar 

  42. Van der Kooij D, Visser A, Oranje JP (1982) Antonie van Leeuwenhoek 48: 229

    Article  Google Scholar 

  43. Van der Kooij (1990) In: McFeters GA (ed) Drinking water microbiology; progress and developments, Brock/Springer Series in Contemporary Bioscience, Springer, Berlin Heidelberg New York, p 57

    Google Scholar 

  44. Van der Kooij D, Hijnen WAM and Kruithof JC (1989) Ozone Sci. Eng. 11: 297

    Article  Google Scholar 

  45. Van der Kooij D (1992) J. Am. Water Works Assoc. 84: 57

    Google Scholar 

  46. Van der Kooij D and Hijnen WAM 1989 Wat. Sci. Technol. 20: 117

    Google Scholar 

  47. Rice EW, Scarpino PV, Reasoner DJ, Logsdon GS and Wild DK (1991) J. Am. Water Works Assoc. 88: 98

    Google Scholar 

  48. LeChevallier MW, Schulz, W and Lee RG (1991) Appl. Environ. Microbiol 57: 857

    CAS  Google Scholar 

  49. Joret JC, Levy Y and Volk C (1991). Wat. Sci. Technol 24: 95

    CAS  Google Scholar 

  50. Kaplan LA, Reasoner DJ, Rice EW and Bott TI (1992) Rev Sci de L’eau 5: 225

    Google Scholar 

  51. Servais P, Billen G, Laurent P, Levy Y, Randon G (1992). Rev, Sci. L’eau 5: 69

    CAS  Google Scholar 

  52. Levy Y, Randon G. Denojean C, Pagliardini A, Vajente G. Champsaur H (1992). Rev. Sci L’eau 5: 225

    Google Scholar 

  53. Van der Kooij D, Hijnen WAM (1984) Appl. Environ. Microbiol. 47: 551

    Google Scholar 

  54. Miltner RJ, Shukairy HM and Summers RS (1992) J. Am. Water Works Assoc. 84: 53

    CAS  Google Scholar 

  55. Lechevallier et MW, Becker WC, Schorr P and Lee RG (1992) J. Am. Water Works Assoc. 84: 136

    CAS  Google Scholar 

  56. Van der Kooij D and Hijnen WAM (1985) Appl. Environ. Microbiol. 49: 765

    Google Scholar 

  57. Van der Kooij D, Oranje JP and Hijnen WAM (1982) Appl. Environ. Microbiol. 44: 1086

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Kooij, D. (1995). Significance and Assessment of the Biological Stability of Drinking Water. In: Hrubec, J. (eds) Water Pollution. The Handbook of Environmental Chemistry, vol 5 / 5B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48468-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48468-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14504-3

  • Online ISBN: 978-3-540-48468-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics