Advertisement

Fundamentals and Application of Biofilm Processes in Drinking-Water Treatment

Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 5 / 5B)

Abstract

Biofilm processes are used primarily to produce a biologically stable drinking water, which does not foster growth of microorganisms during its distribution. This article describes the characteristics of biofilms and biofilm processes. It emphasizes quantitative modeling of the phenomenon controlling the accumulation of biofilm and the removal of organic and inorganic materials comprising biological instability. The article describes a practical means, the normalized surface loading, for applying biofilm modeling to the design and analysis of biofilm processes. Special attention is given to the most common applications in drinking-water treatment: aerobic oxidation of low concentrations of biodegradable organic material, nitrification of ammonium nitrogen, and denitrification of nitrate nitrogen.

Keywords

Chemical Oxygen Demand Granular Activate Carbon Aerobic Oxidation Primary Electron Donor Biodegradable Dissolve Organic Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols and Abbreviations

a

specific surface area of biofilm, m−1

b

biomass endogenous-decay coefficient, day−1

b′= b + bdet

overall biofilm loss-rate coefficient, day−1

bdet

first-order rate coefficient for biofilm detachment, day−1

dp

medium-particle diameter, m

D

molecular diffusion coefficient for the substrate in the bulk liquid, m2 day−1

Df

molecular diffusion coefficient for the substrate in the biofilm, m2 day−1

D*f

D f/D

f

ratio of actual steady-state flux to the deep flux

g

gravitational constant, 9.8 ms−2

h

liquid holdup

J

substrate flux, gs m−2 day−1

JR

reference flux = minimum flux giving a deep, steady-state biofilm, gs m−2 day−1

J*

dimensionless flux = J[Kq m X f D f]1/2

J*deep

dimensionless substrate flux into a deep biofilm

J*R

dimensionless value of J R

km

mass-transport coefficient, m day−1

K

substrate concentration at which the utilization rate is one-half the maximum rate, gs m−3

K*

dimensionless mass transfer coefficient = D/L[K/q m X f D f]1/2

L

thickness of an effective diffusion layer, m

Lf

biofilm thickness, m

L*

L/τ

qm

maximum specific rate of substrate utilization, gs gx−1 day−1

Q

liquid flow rate, m3 day−1

rdep

rate of deposition of suspended biomass, gx day−1

rdet

rate of biofilm detachment, gx day−1

rdiff

rate of substrate accumulation due to diffusion at a point in the biofilm, gs m−3 day−1

rut

rate of substrate utilization by suspended biomass, gs m−3 day−1

rutf

rate of substrate utilization at a point in the biofilm, gs m−3 day−1

S

concentration of rate-limiting substrate in the bulk liquid, gs m−3

Sf

substrate concentration at a point in the biofilm, gs m−3

Smin

minimum substrate concentration to support a steady-state biofilm = K(b′/Yq mb′), gs m−3

SS

substrate concentration at the outer surface of the biofilm, gs m−3

S0

influent substrate concentration, gs m−3

S*

S/K = dimensionless substrate concentration

S*min

growth potential = b′/Yq mb

t

time, days

u

superficial flow velocity m day−1

V

total volume of reactor or reactor segment, m3

Xa

concentration of active biomass in the bulk liquid, gx m−3

Xf

biomass density in the biofilm, gx m−3

Xa0

influent active-biomass concentration, gx m−3

Y

true yield, gx gs−1

z

distance dimension normal to the biofilm surface, m

α

constant used to compute f

β

constant used to compute f

ε

porosity of the bed

μ

absolute viscosity of the liquid, g m−1 day−1

μm

maximum specific growth rate, day−1

ρp

density of the medium particles, g m−3

ρw

density of the liquid, g m−3

σ

liquid shear stress, dyne cm−2

τ

standard biofilm depth dimension [21], m

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rittmann BE, Snoeyink VL (1984) J Amer Water Works Assn 7610: 106Google Scholar
  2. 2.
    Kobayashi H, Ritmann BE (1982) Environ Sci Technol 16: 170ACrossRefGoogle Scholar
  3. 3.
    Stratton RE, Namkung E, Ritmann BE (1983) J Amer Water Works Assn 75: 463Google Scholar
  4. 4.
    Rittmann BE, Huck PM (1989) CRC Crit Rev Environ Control 192: 119Google Scholar
  5. 5.
    Rittmann BE, Gantzer CJ, Montiel A (1994) In: Suffett M, Mallevialle J (eds) Control of tastes and odors in drinking water. American Water Works Assn., Denver, p 203Google Scholar
  6. 6.
    Namkung E, Rittmann BE (1987) J Amer Water Works Assn 79: 7: 107Google Scholar
  7. 7.
    Manem JA, Rittmann BE (1992) J Amer Water Works Assn 84: 4: 152Google Scholar
  8. 8.
    JM Montgomery Consulting Engineers, Inc. (1985) Water treatment principles and practices, John Wiley and Sons, Inc., New YorkGoogle Scholar
  9. 9.
    Characklis WG, Marshall KC (eds) (1990), Biofilms, Wiley-Interscience, New YorkGoogle Scholar
  10. 10.
    Furumai H, Rittmann BE (1994) Evaluation of multispecies biofilm and floc processes using a simplified aggregate model, Water Sci Technol, in pressGoogle Scholar
  11. 11.
    Rittmann BE, Manem JA (1992) Biotechnol Bioengr 39: 914CrossRefGoogle Scholar
  12. 12.
    Rittmann BE (1990) J Amer Water Works Assn 82: 1: 62Google Scholar
  13. 13.
    Davis ML, Cornwell DA (1991) Introduction to environmental engineering, 2nd edn., McGraw-Hill Book Co., New YorkGoogle Scholar
  14. 14.
    Sprouse GB, Rittmann BE (1990) J Environ Engr 116: 314CrossRefGoogle Scholar
  15. 15.
    Najm IN, Snoeyink VL, Suidan MT, Lee CH, Richard Y (1990) J Amer Water Works Assn 82: 1: 65Google Scholar
  16. 16.
    Rittmann BE (1993) Transformation of organic micropollutants in biological processes, this volumeGoogle Scholar
  17. 17.
    Harvey RW, Smith RL, George L (1984) Appl Environ Microb 48: 1197Google Scholar
  18. 18.
    Rittmann BE (1993) The significance of biofilms in porous media. Water Resources F esearch 29: 2195.CrossRefGoogle Scholar
  19. 19.
    Gantzer CJ, Cunningham AB, Gujer W, Gutekunst B, Heijnen JJ, Lightfoot EN, Odham G, Rittmann BE, Rosenberg E, Stolzenbach KD, Zehnder AJB (1989) In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms, John Wiley and Sons, Inc., Chichester, England, pp 73–90Google Scholar
  20. 20.
    Kissel JC, McCarty PL, Street RL (1984) J Environ Engr 110: 393CrossRefGoogle Scholar
  21. 21.
    Rittmann BE, McCarty PL (1981) J Environ Engr 104: 889Google Scholar
  22. 22.
    Rittmann BE (1989) In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms, John Wiley and Sons, Inc., Chichester, England, pp 49–58Google Scholar
  23. 23.
    Characklis WG, Turakhia MH, Zelver N (1990) in: Characklis WG, Marshall KC (eds) Biofilms, Wiley-Interscience, New York, pp 265–340Google Scholar
  24. 24.
    Rittmann BE (1982) Biotechnol Bioengr 24: 501CrossRefGoogle Scholar
  25. 25.
    Chang HT, Rittmann BE, Amar D, Ehlinger O, Lesty Y (1991) Biotechnol Bioengr 38: 499CrossRefGoogle Scholar
  26. 26.
    Trinet F, Heim R, Amar D, Chang HT, Rittmann BE (1991) Water Sci Technol 23: 1347Google Scholar
  27. 27.
    Wanner O, Gujer W (1986) Biotechnol Bioengr 28: 314CrossRefGoogle Scholar
  28. 28.
    Chang HT, Rittmann BE (1988) J Water Pollution Control Fedn 60: 362Google Scholar
  29. 29.
    Speitel JR, DiGiano FA (1986) J Environ Engr 113: 464CrossRefGoogle Scholar
  30. 30.
    Rittmann BE, McCarty PL (1980) Biotechnol Bioengr 22: 2343CrossRefGoogle Scholar
  31. 31.
    Sdez PB, Rittmann BE (1988) Biotechnol Bioengr 32: 379CrossRefGoogle Scholar
  32. 32.
    Sdez PB, Rittmann BE (1992) Biotechnol Bioengr 39: 790CrossRefGoogle Scholar
  33. 33.
    Heath MS, Wirtel SA, Rittmann BE (1990) Res J Water Pollution Control Fedn 62: 185Google Scholar
  34. 34.
    Wirtel SA, Noguera DR, Kampreier DT, Heath MS, Rittmann BE (1992) Water Environ Res 64: 706CrossRefGoogle Scholar
  35. 35.
    Rittmann BE (1982) Biotechnol Bioengr 24: 1341CrossRefGoogle Scholar
  36. 36.
    Metcalf and Eddy, Inc. (1991) Wastewater engineering: treatment, disposal, and reuse, McGraw-Hill Book Co., New YorkGoogle Scholar
  37. 37.
    Heath MS, Wirtel SA, Rittmann BE, Noguera DR (1991) Res J Water Pollution Control Fedn 63: 91Google Scholar
  38. 38.
    Cannon FS (1991) Res J Water Pollution Control Fedn 63: 90Google Scholar
  39. 39.
    Namkung E, Rittmann BE (1987) J Amer Water Works Assn 79: 7: 107Google Scholar
  40. 40.
    Huck PM (1990) J Amer Water Works Assn 82: 7: 78Google Scholar
  41. 41.
    Block JC, Mathieu L, Servais P, Fontvieille D, Werner P (1992) Water Res 26: 481CrossRefGoogle Scholar
  42. 42.
    van der Kooij D (1993) this volumeGoogle Scholar
  43. 43.
    LeChevallier M, Cawthon CD, Lee RG (1990) J Amer Water Works Assn 82: 7: 87Google Scholar
  44. 44.
    Johnson JD, Jensen JN (1986) J Amer Water Works Assn 78: 4: 156Google Scholar
  45. 45.
    Manem JA, Rittmann BE (1992) J Amer Water Works Assn 84: 4: 147Google Scholar
  46. 46.
    Valentine RL (1985) in: Jolley RL (ed) Water chlorination: environmental impact and health effects, vol. 5, Lewis Publ., Chelsea, MichGoogle Scholar
  47. 47.
    Rittmann BE, Langeland WE (1985) J. Water Pollution Control Fedn. 57: 300Google Scholar
  48. 48.
    McCarty PL (1972) Stoichiometry of biological reactions, Proc intl conf towards a unified concept of biological waste treatment design, Atlanta, Georgia (Oct. 1972 )Google Scholar
  49. 49.
    Christensen DR, McCarty PL (1975) J Water Pollution Contol Fedn 47: 2653Google Scholar
  50. 50.
    McCarty PL, Beck L, St. Amant P (1969) Proc 24th Purdue industrial waste conference, West Lafayette, Ind., p 1271Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  1. 1.Department of Civil EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations