Skip to main content

Fundamentals and Application of Biofilm Processes in Drinking-Water Treatment

  • Chapter
Water Pollution

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5 / 5B))

Abstract

Biofilm processes are used primarily to produce a biologically stable drinking water, which does not foster growth of microorganisms during its distribution. This article describes the characteristics of biofilms and biofilm processes. It emphasizes quantitative modeling of the phenomenon controlling the accumulation of biofilm and the removal of organic and inorganic materials comprising biological instability. The article describes a practical means, the normalized surface loading, for applying biofilm modeling to the design and analysis of biofilm processes. Special attention is given to the most common applications in drinking-water treatment: aerobic oxidation of low concentrations of biodegradable organic material, nitrification of ammonium nitrogen, and denitrification of nitrate nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a :

specific surface area of biofilm, m−1

b :

biomass endogenous-decay coefficient, day−1

b′= b + b det :

overall biofilm loss-rate coefficient, day−1

b det :

first-order rate coefficient for biofilm detachment, day−1

d p :

medium-particle diameter, m

D :

molecular diffusion coefficient for the substrate in the bulk liquid, m2 day−1

D f :

molecular diffusion coefficient for the substrate in the biofilm, m2 day−1

D*f :

D f/D

f :

ratio of actual steady-state flux to the deep flux

g :

gravitational constant, 9.8 ms−2

h :

liquid holdup

J :

substrate flux, gs m−2 day−1

J R :

reference flux = minimum flux giving a deep, steady-state biofilm, gs m−2 day−1

J*:

dimensionless flux = J[Kq m X f D f]1/2

J*deep :

dimensionless substrate flux into a deep biofilm

J*R :

dimensionless value of J R

k m :

mass-transport coefficient, m day−1

K :

substrate concentration at which the utilization rate is one-half the maximum rate, gs m−3

K*:

dimensionless mass transfer coefficient = D/L[K/q m X f D f]1/2

L :

thickness of an effective diffusion layer, m

L f :

biofilm thickness, m

L*:

L/τ

q m :

maximum specific rate of substrate utilization, gs gx−1 day−1

Q :

liquid flow rate, m3 day−1

r dep :

rate of deposition of suspended biomass, gx day−1

r det :

rate of biofilm detachment, gx day−1

r diff :

rate of substrate accumulation due to diffusion at a point in the biofilm, gs m−3 day−1

r ut :

rate of substrate utilization by suspended biomass, gs m−3 day−1

r utf :

rate of substrate utilization at a point in the biofilm, gs m−3 day−1

S :

concentration of rate-limiting substrate in the bulk liquid, gs m−3

S f :

substrate concentration at a point in the biofilm, gs m−3

S min :

minimum substrate concentration to support a steady-state biofilm = K(b′/Yq mb′), gs m−3

S S :

substrate concentration at the outer surface of the biofilm, gs m−3

S 0 :

influent substrate concentration, gs m−3

S*:

S/K = dimensionless substrate concentration

S*min :

growth potential = b′/Yq mb

t :

time, days

u :

superficial flow velocity m day−1

V :

total volume of reactor or reactor segment, m3

X a :

concentration of active biomass in the bulk liquid, gx m−3

X f :

biomass density in the biofilm, gx m−3

X 0a :

influent active-biomass concentration, gx m−3

Y :

true yield, gx gs−1

z :

distance dimension normal to the biofilm surface, m

α :

constant used to compute f

β :

constant used to compute f

ε :

porosity of the bed

μ :

absolute viscosity of the liquid, g m−1 day−1

μ m :

maximum specific growth rate, day−1

ρ p :

density of the medium particles, g m−3

ρ w :

density of the liquid, g m−3

σ :

liquid shear stress, dyne cm−2

τ :

standard biofilm depth dimension [21], m

References

  1. Rittmann BE, Snoeyink VL (1984) J Amer Water Works Assn 7610: 106

    Google Scholar 

  2. Kobayashi H, Ritmann BE (1982) Environ Sci Technol 16: 170A

    Article  CAS  Google Scholar 

  3. Stratton RE, Namkung E, Ritmann BE (1983) J Amer Water Works Assn 75: 463

    CAS  Google Scholar 

  4. Rittmann BE, Huck PM (1989) CRC Crit Rev Environ Control 192: 119

    Google Scholar 

  5. Rittmann BE, Gantzer CJ, Montiel A (1994) In: Suffett M, Mallevialle J (eds) Control of tastes and odors in drinking water. American Water Works Assn., Denver, p 203

    Google Scholar 

  6. Namkung E, Rittmann BE (1987) J Amer Water Works Assn 79: 7: 107

    CAS  Google Scholar 

  7. Manem JA, Rittmann BE (1992) J Amer Water Works Assn 84: 4: 152

    CAS  Google Scholar 

  8. JM Montgomery Consulting Engineers, Inc. (1985) Water treatment principles and practices, John Wiley and Sons, Inc., New York

    Google Scholar 

  9. Characklis WG, Marshall KC (eds) (1990), Biofilms, Wiley-Interscience, New York

    Google Scholar 

  10. Furumai H, Rittmann BE (1994) Evaluation of multispecies biofilm and floc processes using a simplified aggregate model, Water Sci Technol, in press

    Google Scholar 

  11. Rittmann BE, Manem JA (1992) Biotechnol Bioengr 39: 914

    Article  CAS  Google Scholar 

  12. Rittmann BE (1990) J Amer Water Works Assn 82: 1: 62

    CAS  Google Scholar 

  13. Davis ML, Cornwell DA (1991) Introduction to environmental engineering, 2nd edn., McGraw-Hill Book Co., New York

    Google Scholar 

  14. Sprouse GB, Rittmann BE (1990) J Environ Engr 116: 314

    Article  CAS  Google Scholar 

  15. Najm IN, Snoeyink VL, Suidan MT, Lee CH, Richard Y (1990) J Amer Water Works Assn 82: 1: 65

    CAS  Google Scholar 

  16. Rittmann BE (1993) Transformation of organic micropollutants in biological processes, this volume

    Google Scholar 

  17. Harvey RW, Smith RL, George L (1984) Appl Environ Microb 48: 1197

    CAS  Google Scholar 

  18. Rittmann BE (1993) The significance of biofilms in porous media. Water Resources F esearch 29: 2195.

    Article  CAS  Google Scholar 

  19. Gantzer CJ, Cunningham AB, Gujer W, Gutekunst B, Heijnen JJ, Lightfoot EN, Odham G, Rittmann BE, Rosenberg E, Stolzenbach KD, Zehnder AJB (1989) In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms, John Wiley and Sons, Inc., Chichester, England, pp 73–90

    Google Scholar 

  20. Kissel JC, McCarty PL, Street RL (1984) J Environ Engr 110: 393

    Article  CAS  Google Scholar 

  21. Rittmann BE, McCarty PL (1981) J Environ Engr 104: 889

    Google Scholar 

  22. Rittmann BE (1989) In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms, John Wiley and Sons, Inc., Chichester, England, pp 49–58

    Google Scholar 

  23. Characklis WG, Turakhia MH, Zelver N (1990) in: Characklis WG, Marshall KC (eds) Biofilms, Wiley-Interscience, New York, pp 265–340

    Google Scholar 

  24. Rittmann BE (1982) Biotechnol Bioengr 24: 501

    Article  Google Scholar 

  25. Chang HT, Rittmann BE, Amar D, Ehlinger O, Lesty Y (1991) Biotechnol Bioengr 38: 499

    Article  CAS  Google Scholar 

  26. Trinet F, Heim R, Amar D, Chang HT, Rittmann BE (1991) Water Sci Technol 23: 1347

    CAS  Google Scholar 

  27. Wanner O, Gujer W (1986) Biotechnol Bioengr 28: 314

    Article  CAS  Google Scholar 

  28. Chang HT, Rittmann BE (1988) J Water Pollution Control Fedn 60: 362

    CAS  Google Scholar 

  29. Speitel JR, DiGiano FA (1986) J Environ Engr 113: 464

    Article  Google Scholar 

  30. Rittmann BE, McCarty PL (1980) Biotechnol Bioengr 22: 2343

    Article  CAS  Google Scholar 

  31. Sdez PB, Rittmann BE (1988) Biotechnol Bioengr 32: 379

    Article  Google Scholar 

  32. Sdez PB, Rittmann BE (1992) Biotechnol Bioengr 39: 790

    Article  Google Scholar 

  33. Heath MS, Wirtel SA, Rittmann BE (1990) Res J Water Pollution Control Fedn 62: 185

    CAS  Google Scholar 

  34. Wirtel SA, Noguera DR, Kampreier DT, Heath MS, Rittmann BE (1992) Water Environ Res 64: 706

    Article  CAS  Google Scholar 

  35. Rittmann BE (1982) Biotechnol Bioengr 24: 1341

    Article  CAS  Google Scholar 

  36. Metcalf and Eddy, Inc. (1991) Wastewater engineering: treatment, disposal, and reuse, McGraw-Hill Book Co., New York

    Google Scholar 

  37. Heath MS, Wirtel SA, Rittmann BE, Noguera DR (1991) Res J Water Pollution Control Fedn 63: 91

    CAS  Google Scholar 

  38. Cannon FS (1991) Res J Water Pollution Control Fedn 63: 90

    CAS  Google Scholar 

  39. Namkung E, Rittmann BE (1987) J Amer Water Works Assn 79: 7: 107

    CAS  Google Scholar 

  40. Huck PM (1990) J Amer Water Works Assn 82: 7: 78

    CAS  Google Scholar 

  41. Block JC, Mathieu L, Servais P, Fontvieille D, Werner P (1992) Water Res 26: 481

    Article  CAS  Google Scholar 

  42. van der Kooij D (1993) this volume

    Google Scholar 

  43. LeChevallier M, Cawthon CD, Lee RG (1990) J Amer Water Works Assn 82: 7: 87

    CAS  Google Scholar 

  44. Johnson JD, Jensen JN (1986) J Amer Water Works Assn 78: 4: 156

    CAS  Google Scholar 

  45. Manem JA, Rittmann BE (1992) J Amer Water Works Assn 84: 4: 147

    CAS  Google Scholar 

  46. Valentine RL (1985) in: Jolley RL (ed) Water chlorination: environmental impact and health effects, vol. 5, Lewis Publ., Chelsea, Mich

    Google Scholar 

  47. Rittmann BE, Langeland WE (1985) J. Water Pollution Control Fedn. 57: 300

    CAS  Google Scholar 

  48. McCarty PL (1972) Stoichiometry of biological reactions, Proc intl conf towards a unified concept of biological waste treatment design, Atlanta, Georgia (Oct. 1972 )

    Google Scholar 

  49. Christensen DR, McCarty PL (1975) J Water Pollution Contol Fedn 47: 2653

    Google Scholar 

  50. McCarty PL, Beck L, St. Amant P (1969) Proc 24th Purdue industrial waste conference, West Lafayette, Ind., p 1271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rittmann, B.E. (1995). Fundamentals and Application of Biofilm Processes in Drinking-Water Treatment. In: Hrubec, J. (eds) Water Pollution. The Handbook of Environmental Chemistry, vol 5 / 5B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48468-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48468-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14504-3

  • Online ISBN: 978-3-540-48468-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics