Advertisement

Transformation of Organic Micropollutants by Biological Processes

Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 5 / 5B)

Abstract

Although the main goal of biological drinking-water treatment is production of a biologically stable drinking water, biological processes can also remove organic micropollutants that are of a health concern or that cause tastes and odors. Micropollutants are usually removed as secondary substrates, which means that their oxidation does not provide sufficient electrons or energy to support biomass growth and maintenance. This article develops the biochemical fundamentals and quantitative tools for describing the secondary utilization of micropollutants in biofilm processes. It connects the removals of the secondary substrates to the main goal of treatment, removal of biodegradable organic matter. The article critically reviews the biochemical potential for degrading micropollutants commonly found in drinking-water supplies: petroleum hydrocarbons, chlorinated hydrocarbons, and taste-and-odor compounds.

Keywords

Petroleum Hydrocarbon Reductive Dechlorination Methane Monooxygenase Organic Micropollutants Secondary Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols and Abbreviations

a

specific surface area of biofilm, m−1

C2

adsorbed density of the secondary substrate, gs gx−1

D2

molecular diffusion coefficient for the secondary substrate in the bulk liquid, m2 day−1

Df2

molecular diffusion coefficient for the secondary substrate in the biofilm, m2 day−1

D*f

D f2/D 2

h

liquid holdup

H2

Henry’s law constant for the secondary substrate, m3 atm mol−1

J2

secondary-substrate flux, g2 m−2 day−1

J*

dimensionless flux

km

mass-transport coefficient, m3 day−1

K2

secondary-substrate concentration at which the utilization rate is one-half the maximum rate, gs m−3

KLa2

overall mass-transfer rate coefficient for exchange of the secondary substrate between gas and water phases, day−1

Ko

half-maximum-rate concentration for oxygen, go m−3

Kp

linear partition coefficient, m3 gx −1

Kp

adsorption coefficient for Eq. (24)

L*

L2/τ

L2

thickness of an effective diffusion layer for the secondary substrate, m

Lf

biofilm thickness, m

L*f

L f/τ

MW2

molecular weight of the secondary substrate, gs mol−1

Mx

rate at which biomass is removed from the reactor, gx day−1

n

adsorption exponent

Of

the dissolved oxygen concentration at a position in the biofilm, go m−3

P2

partial pressure of the secondary substrate, atm

Q

liquid flow rate, m3 day−1

qm2

maximum specific rate of secondary-substrate utilization, gs gx−3 day−1

rads

rate of adsorption of the secondary substrate to biomass or other solids, gs m−3 day−1

rdiff2

rate of secondary-substrate accumulation due to diffusion at a point in the biofilm, gs m−3 day−1

rut2

rate of secondary-substrate utilization by suspended biomass, gs m−3 day−1

rutf2

rate of secondary-substrate utilization at a point in the biofilm, gs m−3 day−1

rvol

rate of volatilization of the secondary substrate, gs m−3 day−1

S2

concentration of secondary substrate in the bulk liquid, gs m−3

Sf2

secondary-substrate concentration at a point in the biofilm, gs m−3

Smin

minimum substrate concentration to support a steady-state biofilm, gs m−1

Ss2

secondary-substrate concentration at the outer surface of the biofilm, gs m−3

S20

influent secondary-substrate concentration, gs m−3

S*

S 2/K 2 = dimensionless secondary = substrate concentration

S*s

S s2/K 2

Ss

checking value of S*s

the water-phase secondary-substrate concentration that is in equilibrium with the existing gas-phase concentration, gs m−3

t

time, d

V

total volume of reactor or reactor segment, m3

Xf

biomass density in the biofilm, gx m−3

z

distance dimension normal to the biofilm surface, m

τ

standard biofilm depth dimension = , m

η

effectiveness factor

η

checking value of η

φ

\( \sqrt 2 L_f^*/{(1 + 2S_S^{*'})^{1/2}} \)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rittmann BE (1993) Fundamentals and applications of biofilm processes in drinking-water treatment Handbook Environ Chem, this volumeGoogle Scholar
  2. 2.
    Rittmann BE, Huck PM (1989) CRC Crit Rev Environ Control 19: 2: 119CrossRefGoogle Scholar
  3. 3.
    Bouwer EJ, Crowe PB (1988) J Amer Water Works Assn 80: 9: 82Google Scholar
  4. 4.
    Rittmann BE, Snoeyink VL (1984) J Amer Water Works Assn 76: 10: 106Google Scholar
  5. 5.
    Stratton R, Namkung E, Rittmann BE (1983) J Amer Water Works Assn 75: 463Google Scholar
  6. 6.
    Kobayashi H, Rittmann BE (1982) Environ Sci Technol 16: 170ACrossRefGoogle Scholar
  7. 7.
    Rittmann BE (1985) Sci Total Environ 47: 99CrossRefGoogle Scholar
  8. 8.
    Office of Technology Assessment (1984) Protecting the Nation’s Groundwater from Contamination, Vol. 1. OTA-0–233, Washington, DC, p. 18Google Scholar
  9. 9.
    Rittmann BE, Seagren E, Wrenn B, Valocchi A.1, Ray C, Raskin L (1994) In: Situ Bioremediation, second ed., Noyes Publ., Inc., Park Ridge, New Jersey.Google Scholar
  10. 10.
    Hubbs SA (1983) Occurrence of volatile organic chemicals, In: Occurrence and Removal of Volatile Organic Chemicals in Drinking Water, Amer Water Works Assn Res Foundation, Denver, Colorado, p. 31Google Scholar
  11. 11.
    Fleischacker SJ, Randtke SJ (1983), J Amer Water Works Assn 75: 132Google Scholar
  12. 12.
    Hubbs SA, Wise C, Vaughn WC (1981) Trace organic monitoring in the Ohio River. Proc Natl Conf Environ Engr, Am Soc Civil Engrs ( Atlanta, Georgia ), p. 189Google Scholar
  13. 13.
    Rittmann BE, Gantzer CJ, Montiel A (1994) In: Suffett M, Mallevialle J (eds) Control of Tastes and Odors in Drinking Water, Amer Water Works Assn, Denver, Colorado, p 203Google Scholar
  14. 14.
    Mallevialle J, Suffett IH (1987) Identification and Treatment of Tastes and Odors in Drinking Water. Amer Water Works Assn Res Foundation, Denver, ColoradoGoogle Scholar
  15. 15.
    Alexander HC et al (1982) J Amer Water Works Assn 74: 11: 595Google Scholar
  16. 16.
    Verschueren K (1983) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  17. 17.
    Amoore JE (1986) J Amer Water Works Assn 78: 3: 70Google Scholar
  18. 18.
    Palmer CM (1962) Algae in water supplies, U.S. Public Health Service Pub No 657, Washington, DCGoogle Scholar
  19. 19.
    Rittmann BE, McCarty PL (1981) J Environ Engr 107: 831Google Scholar
  20. 20.
    Rittmann BE, McCarty PL (1980) Biotechnol Bioengr 22: 2343CrossRefGoogle Scholar
  21. 21.
    Rittmann BE, Jackson D, Storck SL (1988) In: Wise DL (ed), Biotreatment Systems, Vol 3, CRC Press, Boca Raton, Florida, p. 15Google Scholar
  22. 22.
    Namkung E, Stratton RG, Rittmann BE (1983) J Water Poll Control Fedn 55: 1366Google Scholar
  23. 23.
    Bae W, Odencrantz JE, Rittmann BE, Valocchi AJ (1990) J Contam Hydrol 6: 53CrossRefGoogle Scholar
  24. 24.
    Namkung E, Rittmann BE (1987) J Water Poll Control Fedn 59: 670Google Scholar
  25. 25.
    Rittmann BE (1982) Biotechnol Bioengr 24: 1341CrossRefGoogle Scholar
  26. 26.
    Atkinson B, Daoud IS (1968) Trans Inst Chem Engrs 46: 19Google Scholar
  27. 27.
    Suidan MT, Rittmann BE, Traegner U (1987) Water Res 21: 491CrossRefGoogle Scholar
  28. 28.
    Malmstead MJ (1992) Modeling oxygen-dependent biodegradation of quinoline in batch and column studies. MS thesis, Dept. of Civil Engineering, University of Illinois, Urbana, IllinoisGoogle Scholar
  29. 29.
    Bae W (1992) Modeling dual-limitation kinetics incorporating intracellular cofactor responses. PhD dissertation, Dept. of Civil Engineering, University of Illinois, Urbana, IllinoisGoogle Scholar
  30. 30.
    Wrenn BA (1991) Substrate interactions during the anaerobic biodegradation of 111-trichloroethane, PhD dissertation, Dept. Civil Engineering, University of Illinois, Urbana, IllinoisGoogle Scholar
  31. 31.
    Sdez PB, Rittmann BE (1993) Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol). Biodegradation, 4: 3CrossRefGoogle Scholar
  32. 32.
    Smets BF, Rittmann BE (1990) Water Res 24: 355CrossRefGoogle Scholar
  33. 33.
    Rittmann BE, Henry B, Odencrantz JE, Sutfin JA (1992). Biodegradation 2: 171CrossRefGoogle Scholar
  34. 34.
    Gottschalk G (1986) Bacterial Metabolism, 2nd ed., Springer-Verlag Inc., New YorkCrossRefGoogle Scholar
  35. 35.
    Higgins IJ, Gilbert PD (1978) In: Chater KWA, Somerville, HS, (eds) The Oil Industry and Microbial Ecosystems, Heydon and Sons Ltd., London, p. 80Google Scholar
  36. 36.
    Singer DR, Finnerty WR (1984) in: Atlas RM (ed) Petroleum Microbiology, Macmillan Publ. Co., New York, p 1Google Scholar
  37. 37.
    Shelton RA, Kochi JK (1981) Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York, p 231Google Scholar
  38. 38.
    Ribbons DW, Eaton RW (1982) In: Chakrabartg AM (ed) Biodegradation and Detoxification of Environmental Pollutants, CRC Press Inc., Boca Raton, Florida, p 59Google Scholar
  39. 39.
    Gibson DT, Subramanian V (1984) In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker Inc., New York, p 181Google Scholar
  40. 40.
    Traxler RW, Bernard JM (1969) Intl Biodeterioration Bull 5: 21Google Scholar
  41. 41.
    Parekh VR, Traxler RW, Sobek JM (1977) Appl Environ Microb 33: 881Google Scholar
  42. 42.
    Grbic-Galic D, Vogel TM (1987) Appl Environ Microb 53: 254Google Scholar
  43. 43.
    Zeyer J, Kuhn EP, Schwarzenbach RP (1986) Appl Environ Microb 52: 944Google Scholar
  44. 44.
    Pirnik MP (1977) CRC Crit Rev Microb 5: 413CrossRefGoogle Scholar
  45. 45.
    Perry JJ (1984) In: Atlas RM (ed) Petroleum Microb, Macmillan Publ. Co., New York, p 61Google Scholar
  46. 46.
    Lehninger AL (1975) Biochemistry, 2nd ed., Worth Publishers Inc., New YorkGoogle Scholar
  47. 47.
    Brock TD, Madigan MT (1991) Biology of Microorganisms, 6th ed., Prentice-Hall Inc., Engelwood Cliffs, New JerseyGoogle Scholar
  48. 48.
    Morrison RT, Boyd RN (1973) Organic Chemistry, Allyn and Bacon, Boston, Mass.Google Scholar
  49. 49.
    Goldman P (1972) In: The Degradation of Synthetic Organic Molecules in the Biosphere, Nat. Acad. Sci. Press, Washington, D.C., p 147Google Scholar
  50. 50.
    Rittmann BE, McCarty PL (1980) Appl Environ Microb 39: 1225Google Scholar
  51. 51.
    Brunner W, Staub D, Leisinger T (1980) Appl Environ Microb 40: 950Google Scholar
  52. 52.
    LaPat-Polasko LT, McCarty PL, Zehnder AJB (1984) Appl Environ Microb 47: 825Google Scholar
  53. 53.
    Kohler-Staub D, Leisinger T, J Bacteriology 162: 676Google Scholar
  54. 54.
    Colby J, Stirling DI, Dalton H (1977) Biochem J 165: 395Google Scholar
  55. 55.
    Patel RN, Hou CT, Laskin AI, Felix A (1982) Appl Environ Microb 44: 1130Google Scholar
  56. 56.
    Tsien HC, Brusseau GA, Hanson RS, Wackett LP (1989) Appl Environ Microb 55: 3155Google Scholar
  57. 57.
    Nelson MJK, Montgomery SO, Pritchard PH (1988) Appl Environ Microb 54: 604Google Scholar
  58. 58.
    Wackett LP, Gibson DT (1988) Appl Environ Microb 54: 1703Google Scholar
  59. 59.
    Vannelli T, Logan M, Arciero DM, Hooper AB (1990) Appl Environ Microb 56: 1169Google Scholar
  60. 60.
    Dalton H, Stirling DI (1982) Phil Trans Royal Soc. London, B. Biol. Sci. 297: 481CrossRefGoogle Scholar
  61. 61.
    Reineke W (1984) In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker Inc., New York, p 319Google Scholar
  62. 62.
    Reineke W, Knackmuss HJ (1988) Ann Rev Microb 42: 263CrossRefGoogle Scholar
  63. 63.
    Steiert JG, Crawford RL (1985) Trends in Biotechnology 3: 300CrossRefGoogle Scholar
  64. 64.
    Furukawa K (1982) In: Chakrabarty AM (ed) Biodegradation and Detoxification of Environmental Pollutants, CRC Press, Boca Raton, Florida, p 33Google Scholar
  65. 65.
    Safe SH (1984) In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker Inc., New York, p 361Google Scholar
  66. 66.
    Vogel TM, Criddle CS, McCarty PL (1987) Environ Sci Technol 21: 722CrossRefGoogle Scholar
  67. 67.
    Bouwer EJ, McCarty PL (1983) Appl Environ Microb 45: 1295Google Scholar
  68. 68.
    Bae W, Rittmann BE (1990) Effects of electron acceptor and electron donor on biodegradation of CC14 by biofilms. Proc 1990 Spec Conf Environ Engr, Amer. Soc. Civil Engrs., Arlington, Virginia (July 1990), p 390Google Scholar
  69. 69.
    Galli R, McCarty PL (1989) Appl Environ Microb 55: 837Google Scholar
  70. 70.
    Parsons F, Lage GB (1985) J Amer Water Works Assn 77: 52Google Scholar
  71. 71.
    Fathepure BZ, Nengu JP, Boyd SA (1987) Appl Environ Microb 52: 2671Google Scholar
  72. 72.
    Freedman DL, Gossett JM (1989) Appl Environ Microb 55: 2144Google Scholar
  73. 73.
    Belay N, Daniels L (1987) Appl Environ Microb 53: 1604Google Scholar
  74. 74.
    Elgi C, Scholtz R, Cook AM, Leisinger T (1987) FEMS Microbiology Letters 43: 257CrossRefGoogle Scholar
  75. 75.
    Apajalhti JHA, Salkinoja-Salonen MS (1987) J Bacteriology 169: 5125Google Scholar
  76. 76.
    Shelton DR, Tiedje JM (1984) Appl Environ Microb 48: 840Google Scholar
  77. 77.
    Nies L, Vogel TM (1990) Appl Environ Microb 56: 2612Google Scholar
  78. 78.
    Suflita JM, Robinson JA, Tiedje JM (1983) Appl Environ Microb, 45: 1466Google Scholar
  79. 79.
    Gibson SA, Suflita JM (1990) Appl Environ Microb 56: 1825Google Scholar
  80. 80.
    Stevens TO, Linkfield TG, Tiedje JM (1988) Appl Environ Microb 54: 2938Google Scholar
  81. 81.
    Manem JA, Rittmann BE (1992) J. Amer. Water Works Assn. 84: 152Google Scholar
  82. 82.
    Trudgill PW (1984) In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker Inc., New YorkGoogle Scholar
  83. 83.
    Trudgill PW (1990) Biodegradation 1: 93CrossRefGoogle Scholar
  84. 84.
    Namkung E, Rittmann BE (1987) J Amer Water Works Assn 79: 7: 107Google Scholar
  85. 85.
    Izaguirre G, Wolfe RL, Means EG (1988) Appl Environ Microb 54: 2424Google Scholar
  86. 86.
    Izaguirre G, Wolfe RL, Means EG, Water Sci Technol 20, 89: 205Google Scholar
  87. 87.
    Hattori K (1988) Water Sci Technol 20: 8 /9: 237Google Scholar
  88. 88.
    Lundgren BV, Grimvall A, Sävenhed R (1988) Water Sci Technol 20: 8 /9: 245Google Scholar
  89. 89.
    Narayan LV, Nunez WJ (1974) J Amer Water Works Assn 66: 9: 532Google Scholar
  90. 90.
    Grady CPL, Lim HC (1980) Biological Wastewater Treatment, Marcel Dekker Inc., New YorkGoogle Scholar
  91. 91.
    Ludzack FJ, Ettinger MB (1960) J Water Pollution Control Fedn 32: 1173Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  1. 1.Department of Civil EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations