Skip to main content

Transformation of Organic Micropollutants by Biological Processes

  • Chapter

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5 / 5B))

Abstract

Although the main goal of biological drinking-water treatment is production of a biologically stable drinking water, biological processes can also remove organic micropollutants that are of a health concern or that cause tastes and odors. Micropollutants are usually removed as secondary substrates, which means that their oxidation does not provide sufficient electrons or energy to support biomass growth and maintenance. This article develops the biochemical fundamentals and quantitative tools for describing the secondary utilization of micropollutants in biofilm processes. It connects the removals of the secondary substrates to the main goal of treatment, removal of biodegradable organic matter. The article critically reviews the biochemical potential for degrading micropollutants commonly found in drinking-water supplies: petroleum hydrocarbons, chlorinated hydrocarbons, and taste-and-odor compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a :

specific surface area of biofilm, m−1

C 2 :

adsorbed density of the secondary substrate, gs gx−1

D 2 :

molecular diffusion coefficient for the secondary substrate in the bulk liquid, m2 day−1

D f2 :

molecular diffusion coefficient for the secondary substrate in the biofilm, m2 day−1

D*f :

D f2/D 2

h :

liquid holdup

H 2 :

Henry’s law constant for the secondary substrate, m3 atm mol−1

J 2 :

secondary-substrate flux, g2 m−2 day−1

J*:

dimensionless flux

k m :

mass-transport coefficient, m3 day−1

K 2 :

secondary-substrate concentration at which the utilization rate is one-half the maximum rate, gs m−3

KLa2 :

overall mass-transfer rate coefficient for exchange of the secondary substrate between gas and water phases, day−1

K o :

half-maximum-rate concentration for oxygen, go m−3

K p :

linear partition coefficient, m3 gx −1

Kp :

adsorption coefficient for Eq. (24)

L*:

L2/τ

L 2 :

thickness of an effective diffusion layer for the secondary substrate, m

L f :

biofilm thickness, m

L*f :

L f/τ

MW 2 :

molecular weight of the secondary substrate, gs mol−1

M x :

rate at which biomass is removed from the reactor, gx day−1

n :

adsorption exponent

O f :

the dissolved oxygen concentration at a position in the biofilm, go m−3

P 2 :

partial pressure of the secondary substrate, atm

Q :

liquid flow rate, m3 day−1

q m2 :

maximum specific rate of secondary-substrate utilization, gs gx−3 day−1

r ads :

rate of adsorption of the secondary substrate to biomass or other solids, gs m−3 day−1

r diff2 :

rate of secondary-substrate accumulation due to diffusion at a point in the biofilm, gs m−3 day−1

r ut2 :

rate of secondary-substrate utilization by suspended biomass, gs m−3 day−1

r utf2 :

rate of secondary-substrate utilization at a point in the biofilm, gs m−3 day−1

r vol :

rate of volatilization of the secondary substrate, gs m−3 day−1

S 2 :

concentration of secondary substrate in the bulk liquid, gs m−3

S f2 :

secondary-substrate concentration at a point in the biofilm, gs m−3

S min :

minimum substrate concentration to support a steady-state biofilm, gs m−1

S s2 :

secondary-substrate concentration at the outer surface of the biofilm, gs m−3

S 2 0 :

influent secondary-substrate concentration, gs m−3

S*:

S 2/K 2 = dimensionless secondary = substrate concentration

S*s :

S s2/K 2

Ss :

checking value of S*s

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4uayaara % WaaSbaaSqaaiaaikdaaeqaaaaa!37CC!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ {\bar S_2}$$ :

the water-phase secondary-substrate concentration that is in equilibrium with the existing gas-phase concentration, gs m−3

t :

time, d

V :

total volume of reactor or reactor segment, m3

X f :

biomass density in the biofilm, gx m−3

z :

distance dimension normal to the biofilm surface, m

τ :

standard biofilm depth dimension = EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aIYaGaam4samaaBaaaleaacaaIYaaabeaakiaadseadaWgaaWcbaGa % aGOmaaqabaGccaGGVaGaamyCamaaBaaaleaacaWGTbGaamOEaaqaba % GccaWGybWaaSbaaSqaaiaadAgaaeqaaOGaaiilaaWcbeaaaaa!40C6!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ \sqrt {2{K_2}{D_2}/{q_{mz}}{X_f},} $$ , m

η :

effectiveness factor

η′:

checking value of η

φ:

\( \sqrt 2 L_f^*/{(1 + 2S_S^{*'})^{1/2}} \)

References

  1. Rittmann BE (1993) Fundamentals and applications of biofilm processes in drinking-water treatment Handbook Environ Chem, this volume

    Google Scholar 

  2. Rittmann BE, Huck PM (1989) CRC Crit Rev Environ Control 19: 2: 119

    Article  Google Scholar 

  3. Bouwer EJ, Crowe PB (1988) J Amer Water Works Assn 80: 9: 82

    CAS  Google Scholar 

  4. Rittmann BE, Snoeyink VL (1984) J Amer Water Works Assn 76: 10: 106

    CAS  Google Scholar 

  5. Stratton R, Namkung E, Rittmann BE (1983) J Amer Water Works Assn 75: 463

    CAS  Google Scholar 

  6. Kobayashi H, Rittmann BE (1982) Environ Sci Technol 16: 170A

    Article  CAS  Google Scholar 

  7. Rittmann BE (1985) Sci Total Environ 47: 99

    Article  CAS  Google Scholar 

  8. Office of Technology Assessment (1984) Protecting the Nation’s Groundwater from Contamination, Vol. 1. OTA-0–233, Washington, DC, p. 18

    Google Scholar 

  9. Rittmann BE, Seagren E, Wrenn B, Valocchi A.1, Ray C, Raskin L (1994) In: Situ Bioremediation, second ed., Noyes Publ., Inc., Park Ridge, New Jersey.

    Google Scholar 

  10. Hubbs SA (1983) Occurrence of volatile organic chemicals, In: Occurrence and Removal of Volatile Organic Chemicals in Drinking Water, Amer Water Works Assn Res Foundation, Denver, Colorado, p. 31

    Google Scholar 

  11. Fleischacker SJ, Randtke SJ (1983), J Amer Water Works Assn 75: 132

    CAS  Google Scholar 

  12. Hubbs SA, Wise C, Vaughn WC (1981) Trace organic monitoring in the Ohio River. Proc Natl Conf Environ Engr, Am Soc Civil Engrs ( Atlanta, Georgia ), p. 189

    Google Scholar 

  13. Rittmann BE, Gantzer CJ, Montiel A (1994) In: Suffett M, Mallevialle J (eds) Control of Tastes and Odors in Drinking Water, Amer Water Works Assn, Denver, Colorado, p 203

    Google Scholar 

  14. Mallevialle J, Suffett IH (1987) Identification and Treatment of Tastes and Odors in Drinking Water. Amer Water Works Assn Res Foundation, Denver, Colorado

    Google Scholar 

  15. Alexander HC et al (1982) J Amer Water Works Assn 74: 11: 595

    CAS  Google Scholar 

  16. Verschueren K (1983) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York

    Google Scholar 

  17. Amoore JE (1986) J Amer Water Works Assn 78: 3: 70

    Google Scholar 

  18. Palmer CM (1962) Algae in water supplies, U.S. Public Health Service Pub No 657, Washington, DC

    Google Scholar 

  19. Rittmann BE, McCarty PL (1981) J Environ Engr 107: 831

    CAS  Google Scholar 

  20. Rittmann BE, McCarty PL (1980) Biotechnol Bioengr 22: 2343

    Article  CAS  Google Scholar 

  21. Rittmann BE, Jackson D, Storck SL (1988) In: Wise DL (ed), Biotreatment Systems, Vol 3, CRC Press, Boca Raton, Florida, p. 15

    Google Scholar 

  22. Namkung E, Stratton RG, Rittmann BE (1983) J Water Poll Control Fedn 55: 1366

    CAS  Google Scholar 

  23. Bae W, Odencrantz JE, Rittmann BE, Valocchi AJ (1990) J Contam Hydrol 6: 53

    Article  CAS  Google Scholar 

  24. Namkung E, Rittmann BE (1987) J Water Poll Control Fedn 59: 670

    CAS  Google Scholar 

  25. Rittmann BE (1982) Biotechnol Bioengr 24: 1341

    Article  CAS  Google Scholar 

  26. Atkinson B, Daoud IS (1968) Trans Inst Chem Engrs 46: 19

    Google Scholar 

  27. Suidan MT, Rittmann BE, Traegner U (1987) Water Res 21: 491

    Article  CAS  Google Scholar 

  28. Malmstead MJ (1992) Modeling oxygen-dependent biodegradation of quinoline in batch and column studies. MS thesis, Dept. of Civil Engineering, University of Illinois, Urbana, Illinois

    Google Scholar 

  29. Bae W (1992) Modeling dual-limitation kinetics incorporating intracellular cofactor responses. PhD dissertation, Dept. of Civil Engineering, University of Illinois, Urbana, Illinois

    Google Scholar 

  30. Wrenn BA (1991) Substrate interactions during the anaerobic biodegradation of 111-trichloroethane, PhD dissertation, Dept. Civil Engineering, University of Illinois, Urbana, Illinois

    Google Scholar 

  31. Sdez PB, Rittmann BE (1993) Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol). Biodegradation, 4: 3

    Article  Google Scholar 

  32. Smets BF, Rittmann BE (1990) Water Res 24: 355

    Article  CAS  Google Scholar 

  33. Rittmann BE, Henry B, Odencrantz JE, Sutfin JA (1992). Biodegradation 2: 171

    Article  CAS  Google Scholar 

  34. Gottschalk G (1986) Bacterial Metabolism, 2nd ed., Springer-Verlag Inc., New York

    Book  Google Scholar 

  35. Higgins IJ, Gilbert PD (1978) In: Chater KWA, Somerville, HS, (eds) The Oil Industry and Microbial Ecosystems, Heydon and Sons Ltd., London, p. 80

    Google Scholar 

  36. Singer DR, Finnerty WR (1984) in: Atlas RM (ed) Petroleum Microbiology, Macmillan Publ. Co., New York, p 1

    Google Scholar 

  37. Shelton RA, Kochi JK (1981) Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York, p 231

    Google Scholar 

  38. Ribbons DW, Eaton RW (1982) In: Chakrabartg AM (ed) Biodegradation and Detoxification of Environmental Pollutants, CRC Press Inc., Boca Raton, Florida, p 59

    Google Scholar 

  39. Gibson DT, Subramanian V (1984) In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker Inc., New York, p 181

    Google Scholar 

  40. Traxler RW, Bernard JM (1969) Intl Biodeterioration Bull 5: 21

    CAS  Google Scholar 

  41. Parekh VR, Traxler RW, Sobek JM (1977) Appl Environ Microb 33: 881

    CAS  Google Scholar 

  42. Grbic-Galic D, Vogel TM (1987) Appl Environ Microb 53: 254

    CAS  Google Scholar 

  43. Zeyer J, Kuhn EP, Schwarzenbach RP (1986) Appl Environ Microb 52: 944

    CAS  Google Scholar 

  44. Pirnik MP (1977) CRC Crit Rev Microb 5: 413

    Article  CAS  Google Scholar 

  45. Perry JJ (1984) In: Atlas RM (ed) Petroleum Microb, Macmillan Publ. Co., New York, p 61

    Google Scholar 

  46. Lehninger AL (1975) Biochemistry, 2nd ed., Worth Publishers Inc., New York

    Google Scholar 

  47. Brock TD, Madigan MT (1991) Biology of Microorganisms, 6th ed., Prentice-Hall Inc., Engelwood Cliffs, New Jersey

    Google Scholar 

  48. Morrison RT, Boyd RN (1973) Organic Chemistry, Allyn and Bacon, Boston, Mass.

    Google Scholar 

  49. Goldman P (1972) In: The Degradation of Synthetic Organic Molecules in the Biosphere, Nat. Acad. Sci. Press, Washington, D.C., p 147

    Google Scholar 

  50. Rittmann BE, McCarty PL (1980) Appl Environ Microb 39: 1225

    CAS  Google Scholar 

  51. Brunner W, Staub D, Leisinger T (1980) Appl Environ Microb 40: 950

    CAS  Google Scholar 

  52. LaPat-Polasko LT, McCarty PL, Zehnder AJB (1984) Appl Environ Microb 47: 825

    CAS  Google Scholar 

  53. Kohler-Staub D, Leisinger T, J Bacteriology 162: 676

    Google Scholar 

  54. Colby J, Stirling DI, Dalton H (1977) Biochem J 165: 395

    CAS  Google Scholar 

  55. Patel RN, Hou CT, Laskin AI, Felix A (1982) Appl Environ Microb 44: 1130

    CAS  Google Scholar 

  56. Tsien HC, Brusseau GA, Hanson RS, Wackett LP (1989) Appl Environ Microb 55: 3155

    CAS  Google Scholar 

  57. Nelson MJK, Montgomery SO, Pritchard PH (1988) Appl Environ Microb 54: 604

    CAS  Google Scholar 

  58. Wackett LP, Gibson DT (1988) Appl Environ Microb 54: 1703

    CAS  Google Scholar 

  59. Vannelli T, Logan M, Arciero DM, Hooper AB (1990) Appl Environ Microb 56: 1169

    CAS  Google Scholar 

  60. Dalton H, Stirling DI (1982) Phil Trans Royal Soc. London, B. Biol. Sci. 297: 481

    Article  CAS  Google Scholar 

  61. Reineke W (1984) In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker Inc., New York, p 319

    Google Scholar 

  62. Reineke W, Knackmuss HJ (1988) Ann Rev Microb 42: 263

    Article  CAS  Google Scholar 

  63. Steiert JG, Crawford RL (1985) Trends in Biotechnology 3: 300

    Article  CAS  Google Scholar 

  64. Furukawa K (1982) In: Chakrabarty AM (ed) Biodegradation and Detoxification of Environmental Pollutants, CRC Press, Boca Raton, Florida, p 33

    Google Scholar 

  65. Safe SH (1984) In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker Inc., New York, p 361

    Google Scholar 

  66. Vogel TM, Criddle CS, McCarty PL (1987) Environ Sci Technol 21: 722

    Article  CAS  Google Scholar 

  67. Bouwer EJ, McCarty PL (1983) Appl Environ Microb 45: 1295

    CAS  Google Scholar 

  68. Bae W, Rittmann BE (1990) Effects of electron acceptor and electron donor on biodegradation of CC14 by biofilms. Proc 1990 Spec Conf Environ Engr, Amer. Soc. Civil Engrs., Arlington, Virginia (July 1990), p 390

    Google Scholar 

  69. Galli R, McCarty PL (1989) Appl Environ Microb 55: 837

    CAS  Google Scholar 

  70. Parsons F, Lage GB (1985) J Amer Water Works Assn 77: 52

    CAS  Google Scholar 

  71. Fathepure BZ, Nengu JP, Boyd SA (1987) Appl Environ Microb 52: 2671

    Google Scholar 

  72. Freedman DL, Gossett JM (1989) Appl Environ Microb 55: 2144

    CAS  Google Scholar 

  73. Belay N, Daniels L (1987) Appl Environ Microb 53: 1604

    CAS  Google Scholar 

  74. Elgi C, Scholtz R, Cook AM, Leisinger T (1987) FEMS Microbiology Letters 43: 257

    Article  Google Scholar 

  75. Apajalhti JHA, Salkinoja-Salonen MS (1987) J Bacteriology 169: 5125

    Google Scholar 

  76. Shelton DR, Tiedje JM (1984) Appl Environ Microb 48: 840

    CAS  Google Scholar 

  77. Nies L, Vogel TM (1990) Appl Environ Microb 56: 2612

    CAS  Google Scholar 

  78. Suflita JM, Robinson JA, Tiedje JM (1983) Appl Environ Microb, 45: 1466

    CAS  Google Scholar 

  79. Gibson SA, Suflita JM (1990) Appl Environ Microb 56: 1825

    CAS  Google Scholar 

  80. Stevens TO, Linkfield TG, Tiedje JM (1988) Appl Environ Microb 54: 2938

    CAS  Google Scholar 

  81. Manem JA, Rittmann BE (1992) J. Amer. Water Works Assn. 84: 152

    CAS  Google Scholar 

  82. Trudgill PW (1984) In: Gibson DT (ed) Microbial Degradation of Organic Compounds, Marcel Dekker Inc., New York

    Google Scholar 

  83. Trudgill PW (1990) Biodegradation 1: 93

    Article  CAS  Google Scholar 

  84. Namkung E, Rittmann BE (1987) J Amer Water Works Assn 79: 7: 107

    CAS  Google Scholar 

  85. Izaguirre G, Wolfe RL, Means EG (1988) Appl Environ Microb 54: 2424

    CAS  Google Scholar 

  86. Izaguirre G, Wolfe RL, Means EG, Water Sci Technol 20, 89: 205

    Google Scholar 

  87. Hattori K (1988) Water Sci Technol 20: 8 /9: 237

    Google Scholar 

  88. Lundgren BV, Grimvall A, Sävenhed R (1988) Water Sci Technol 20: 8 /9: 245

    Google Scholar 

  89. Narayan LV, Nunez WJ (1974) J Amer Water Works Assn 66: 9: 532

    CAS  Google Scholar 

  90. Grady CPL, Lim HC (1980) Biological Wastewater Treatment, Marcel Dekker Inc., New York

    Google Scholar 

  91. Ludzack FJ, Ettinger MB (1960) J Water Pollution Control Fedn 32: 1173

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rittmann, B.E. (1995). Transformation of Organic Micropollutants by Biological Processes. In: Hrubec, J. (eds) Water Pollution. The Handbook of Environmental Chemistry, vol 5 / 5B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48468-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48468-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14504-3

  • Online ISBN: 978-3-540-48468-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics