Advertisement

Abstract

We study the multicoloring problem with two objective functions: minimizing the makespan and minimizing the multisum. We focus on partial k-trees and planar graphs. In particular, we give polynomial time approximation schemes (PTAS) for both classes, for both preemptive and non-preemptive multisum colorings.

Keywords

Planar Graph Coloring Problem Polynomial Time Approximation Schema Outerplanar Graph Color Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B88]
    Bodlaender, H.L.: Planar Graphs with Bounded Treewidth. Tech. Report RUU-CS-88-14, Dept. of Comp. Sci., Univ. of Utrecht (March 1988)Google Scholar
  2. [B92]
    Bell, M.: Future directions in traffic signal control. Transportation Research Part A 26, 303–313 (1992)Google Scholar
  3. [B94]
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)zbMATHCrossRefGoogle Scholar
  4. [BBH+98]
    Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On chromatic sums and distributed resource allocation. Information and Computation 140, 183–202 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [BH94]
    Bullock, D., Hendrickson, C.: Roadway traffic control software. IEEE Transactions on Control Systems Technology 2, 255–264 (1994)zbMATHCrossRefGoogle Scholar
  6. [BK98]
    Bar-Noy, A., Kortsarz, G.: The minimum color-sum of bipartite graphs. Journal of Algorithms 28, 339–365 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [BHK+98]
    Bar-Noy, A., Halldórsson, M.M., Kortsarz, G., Shachnai, H., Salman, R.: Sum Multi-Coloring of Graphs. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 390–401. Springer, Heidelberg (1999) (To appear)CrossRefGoogle Scholar
  8. [CCO93]
    Chen, J., Cidon, I., Ofek, Y.: A local fairness algorithm for gigabit LANs/MANs with spatial reuse. IEEE Journal on Selected Areas in Communications 11, 1183–1192 (1993)CrossRefGoogle Scholar
  9. [FK98]
    Feige, U., Kilian, J.: Zero Knowledge and the Chromatic number. Journal of Computer and System Sciences 57(2), 187–199 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  11. [HK99]
    Halldórsson, M.M., Kortsarz, G.: Multicoloring Planar Graphs and Partial k-Trees At http://www.raunvis.hi.is/~mmh/publications.html
  12. [HK+99]
    Halldórsson, M.M., Kortsarz, G., Proskurowski, A., Salman, R., Shachnai, H., Telle, J.A.: Multi-Coloring Trees. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, p. 271. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. [J97]
    Jansen, K.: The Optimum Cost Chromatic Partition Problem. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS. vol. 1203, Springer, Heidelberg (1997)Google Scholar
  14. [KS89]
    Kubicka, E., Schwenk, A.J.: An Introduction to Chromatic Sums. In: Proceedings of the ACM Computer Science Conf., pp. 39–45 (1989)Google Scholar
  15. [MR97]
    McDiarmid, C., Reed, B.: Channel assignment and weighted coloring. Manuscript (1997)Google Scholar
  16. [NS97]
    Narayanan, L., Shende, S.: Static Frequency Assignment in Cellular Networks. Manuscript (1997)Google Scholar
  17. [NSS99]
    Nicoloso, S., Sarrafzadeh, M., Song, X.: On the Sum Coloring Problem on Interval Graphs. Algorithmica 23, 109–126 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [SG98]
    Silberschatz, A., Galvin, P.: Operating System Concepts, 5th edn. Addison-Wesley, Reading (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Magnús M. Halldórsson
    • 1
  • Guy Kortsarz
    • 2
  1. 1.Science InstituteUniversity of IcelandReykjavíkIceland
  2. 2.Dept. of Computer ScienceOpen UniversityRamat AvivIsrael

Personalised recommendations