Advertisement

Abstract

The problem of finding a large independent set in a hyper-graph by an online algorithm is considered. We provide bounds for the best possible performance ratio of deterministic vs. randomized and non-preemptive vs. preemptive algorithms. Applying these results we prove bounds for the performance of online algorithms for routing problems via fixed paths over networks.

Keywords

Competitive Ratio Online Algorithm Unit Bandwidth Preemptive Case Preemptive Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R., Azar, Y.: Beating the logarithmic lower bound: randomized preemptive disjoint paths and call control algorithms. In: Proc. 10th ACM-SIAM Symp. on Discrete Algorithms, pp. 1–10 (1999)Google Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive online routing. In: 34th IEEE Symposium on Foundations of Computer Science, pp. 32–40 (1993)Google Scholar
  3. 3.
    Alon, N., Kahale, N.: Approximating the independence number via the 0-function. Math. Programming 80, 253–264 (1998)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and intractability of approximation problems. In: Proc. of the 33rd IEEE FOCS, pp. 14–23. IEEE, Los Alamitos (1992)Google Scholar
  5. 5.
    Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call control. In: Proc. of 5th ACM-SIAM Symposium on Discrete Algorithms, pp. 312–320 (1994)Google Scholar
  6. 6.
    Awerbuch, B., Gawlick, R., Leighton, T., Rabani, Y.: On-line admission control and circuit routing for high performance computation and communication. In: Proc. 35th IEEE Symp. on Found. of Comp. Science, pp. 412–423 (1994)Google Scholar
  7. 7.
    Bar-Noy, A., Canetti, R., Kutten, S., Mansour, Y., Schieber, B.: Bandwidth allocation with preemption. In: Proc. 27th ACM Symp. on Theory of Computing, pp. 616–625 (1995)Google Scholar
  8. 8.
    Bartal, Y., Fiat, A., Leonardi, S.: Lower bounds for on-line graph problems with application to on-line circuit and optical routing. In: Proc. 28th ACM Symp. on Theory of Computing, pp. 531–540 (1996)Google Scholar
  9. 9.
    Berger, B., Rompel, J.: A better performance guarantee for approximate graph coloring. Algorithmica 5, 459–466 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Boppana, R., Halldorsson, M.M.: Approximating maximum independent sets by excluding subgraphs. BIT 32, 180–196 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  12. 12.
    Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling. In: Proc. 27th ACM Symp. on Theory of Computing, pp. 606–615 (1995)Google Scholar
  13. 13.
    Garay, J.A., Gopal, I.S.: Call preemption in communication networks. In: Proceedings of INFOCOM 1992, Florence, Italy, vol. 44, pp. 1043–1050 (1992)Google Scholar
  14. 14.
    Garay, J., Gopal, I., Kutten, S., Mansour, Y., Yung, M.: Efficient on-line call control algorithms. Journal of Algorithms 23, 180–194 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Leonardi, S.: On-line network routing. In: Fiat, A., Woeginger, G. (eds.) Online Algorithms - The State of the Art, pp. 242–267. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Håstad, J.: Clique is hard to approximate within n1’6. In: Proc. 37th IEEE FOCS, pp. 627–636. IEEE, Los Alamitos (1996)Google Scholar
  17. 17.
    Hofmeister, T., Lefmann, H.: Approximating maximum independent sets in uniform hypergraphs. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 562–570. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, Thatcher (eds.) Plenum Press, New York (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Noga Alon
    • 1
  • Uri Arad
    • 2
  • Yossi Azar
    • 2
  1. 1.Department of Mathematics and Computer ScienceTel-Aviv UniversityIsrael
  2. 2.Dept. of Computer ScienceTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations