Advertisement

Abstract

We consider the problem of scheduling independent jobs on a constant number of machines. We illustrate two important approaches for obtaining polynomial time approximation schemes for two different variants of the problem, more precisely the multiprocessor-job and the unrelated-machines models, and two different optimization criteria: the makespan and the sum of weighted completion times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afrati, F., Bampis, E., Kenyon, C., Milis, I.: Scheduling to minimize the weighted sum of completion times (submitted) Google Scholar
  2. 2.
    Amoura, A.K., Bampis, E., Kenyon, C., Manoussakis, Y.: How to schedule independent multiprocessor tasks. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 1–12. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Amoura, A.K., Bampis, E., Kenyon, C., Manoussakis, Y.: Scheduling indepen-dent multiprocessor tasks, submittedGoogle Scholar
  4. 4.
    Blazewicz, J., Dell’Olmo, P., Drozdowski, M., Speranza, M.G.: Scheduling Multiprocessor Tasks on Three Dedicated Processors. Information Processing Letters 41, 275–280 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bruno, J.L., Coffman Jr., E.G., Sethi, R.: Scheduling independent tasks to reduce mean finishing time. Communications of the Association for Computing Machinery 17, 382–387 (1974)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Chekuri, C., Karger, D., Khanna, S., Stein, C., Skutella, M.: Scheduling jobs with release dates on a constant number of unrelated machines so as to minimize the weighted sum of completion times (submitted)Google Scholar
  7. 7.
    Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approximation techniques for average completion time scheduling. In: Proc. SODA 1997, pp. 609–618 (1997)Google Scholar
  8. 8.
    Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: Complexity, algorithms and apprdoximability, Report Woe-29, TV Graz (1998)Google Scholar
  9. 9.
    Chakrabarti, S., Phillips, C.A., Shulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Improved scheduling algorithms for minsum criteria. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 646–657. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Chudak, F.A., Shmoys, D.B.: Approximation algorithms for precedence-constrained scheduling problems on parallel machines that run at different speeds. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 581–590 (1997)Google Scholar
  11. 11.
    Dell’Olmo, P., Speranza, M.G., Tuza, Z.: Efficiency and Effectiveness of Normal Schedules on Three Dedicated Processors (Submitted)Google Scholar
  12. 12.
    Du, J., Leung, J.Y.-T.: Complexity of Scheduling Parallel Task Systems. SIAM J. Discrete Math. 2(4), 473–487 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Goemans, M.X.: An Approximation Algorithm for Scheduling on Three Dedicated Processors. Disc. App. Math. 61, 49–59 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimiza¬tion and approximation in deterministic sequencing and scheduling. Ann. Discrete Math. 5, 287–326 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hall, L.A., Shulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize aver¬age completion time: Off-line and on-line approximation algorithms. Mathematics of Operations Research 22, 513–544 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hall, L.A., Shmoys, D.B.: Jackson’s rule for single-machine scheduling: making a good heuristic better. Mathematics of Operations Research 17, 22–35 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hoogeveen, J., Van De Velde, S.L., Veltman, B.: Complexity of Scheduling Multiprocessor Tasks with Prespecified Processors Allocation. Disc. App. Math. 55, 259–272 (1994)zbMATHCrossRefGoogle Scholar
  18. 18.
    Horn, W.A.: Minimizing average flow time with parallel machines. Operations Research 21, 846–847 (1973)zbMATHCrossRefGoogle Scholar
  19. 19.
    Hall, L.A., Schultz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time. Mathematics of Operations Research 22, 513–544 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Jansen, K., Porkolab, L.: Linear-Time approximation schemes for malleable parallel tasks, Technical Report MPI-I-98-1-025, Max Planck Institute, also in Proceedings of SODA 1999Google Scholar
  21. 21.
    Kawaguchi, T., Kyan, S.: Worst case bound of an LRF schedule for the mean weighted flow-time problem. SIAM J. on Computing 15, 1119–1129 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Goemans, M.X.: Improved approximation algorithms for scheduling with release dates. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 591–598 (1997)Google Scholar
  23. 23.
    Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of uniform machines subject to release dates. In: Pulleyblanck, W.R. (ed.) Progress in Combinatorial Optimization, pp. 245–261. Academic Press, London (1984)Google Scholar
  24. 24.
    Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Annals of Discrete Mathematics 1, 343–362 (1977)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical programming 46, 259–271 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Möhring, R.H., Schäfpter, M.W., Shulz, A.S.: Scheduling jobs with communication delays: Using unfeasible solutions for approximation. In: Diaz, J., Serna, M. (eds.) ESA 1996. LNCS, vol. 1136, pp. 76–90. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Munier, A., Queyranne, M., Shulz, A.S.: Approximation bounds for a general class of precedence-constrained parallel machine scheduling problems. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 367–382. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  28. 28.
    Philips, C., Stein, C., Wein, J.: Scheduling job that arrive over time. In: Proc. 4th Workshop on Algorithms and Data Structures (1995) (to appear in Mathematical Programming)Google Scholar
  29. 29.
    Philips, C., Stein, C., Wein, J.: Task scheduling in networks. SIAM J. on Discrete Mathematics 10, 573–598 (1997)CrossRefGoogle Scholar
  30. 30.
    Philips, C., Stein, C., Wein, J.: Minimizing average completion time in the presence of release dates. Mathematical Programming 82, 199–223 (1998)MathSciNetGoogle Scholar
  31. 31.
    Phillips, C.A., Shulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Improved bounds on relaxations of a parallel machine scheduling problem. Journal of Combinatorial Optimization 1, 413–426 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Sahni, S.: Algorithms for scheduling independent tasks. Journal of the Association for Computing Machinery 23, 116–127 (1976)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Savelsbergh, M.W.P., Uma, R.N., Wein, J.M.: An experimental study of LP-based approximation algorithms for scheduling problems. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 453–462 (1998)Google Scholar
  34. 34.
    Schrage, L.: A proof of the shortest remainig processing time processing discipline. Operations Research 16, 687–690 (1968)zbMATHCrossRefGoogle Scholar
  35. 35.
    Shulz, A.S.: Scheduling to minimize total weighted completion time: Performance guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)Google Scholar
  36. 36.
    Schulz, A.S., Skutella, M.: Random-based scheduling: New approximations and LP lower bounds. In: Rolim, J.D.P. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 119–133. Springer, Heidelberg (1997)Google Scholar
  37. 37.
    Schulz, A.S., Skutella, M.: Scheduling-LPs bear probabilities: Randomized approximations for min-sum criteria. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 416–429. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  38. 38.
    Schulz, A.S., Woeginger, G.J.: A PTAS for minimizing the weigthed sum of job completion times on parallel machines. In: Proceedings of STOC 1999 (1999)Google Scholar
  39. 39.
    Skutella, M.: Semidefinite relaxations for parallel machine scheduling. In: Proc. FOCS, pp. 472–481 (1998)Google Scholar
  40. 40.
    Skutella, M.: Convex quadratic programming relaxations for network scheduling problems. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 127–138. Springer, Heidelberg (1999)Google Scholar
  41. 41.
    Smith, W.: Various optimizers for single-stage production. Naval Res. Logist. Quart. 3, 59–66 (1956)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Shmoys, D., Tardos, E.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62, 461–474 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Woeginger, G.J.: When does a dynamic programming formulation guarantee the existence of an FPTAS, Report Woe-27, Institut fur Mathematik B, Technical University of Graz, Austria (April 1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • F. Afrati
    • 1
  • E. Bampis
    • 2
  • C. Kenyon
    • 3
  • I. Milis
    • 4
  1. 1.NTUADivision of Computer ScienceAthensGreece
  2. 2.LaMIUniversité d’Evry Boulevard François MitterrandEvry CedexFrance
  3. 3.LRI, Bât 490, Universitê Paris-SudOrsay CedexFrance
  4. 4.Dept. of InformaticsAthens University of EconomicsAthensGreece

Personalised recommendations